Problem Description

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

Input

输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)

Output

输出 一行有两个数, 最短距离及其花费。

Sample Input

3 2
1 2 5 6
2 3 4 5
1 3
0 0

Sample Output

9 11
解题思路:解题关键先保证是最短距离,其次如果距离相等的话,再保证最小费用。首先要预处理一下,因为读入数据可能出现重边,如果不处理就会进行覆盖原来的权值,这样就出错了。
AC代码一Dijkstra:
 #include<bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = ;
int n,m,a,b,d,p,s,t,dis[MAXN],cis[MAXN],cost[MAXN][MAXN],G[MAXN][MAXN];//dis数组记录当前节点离起点的最短路径,cis数组记录当前节点离起点的最小费用,cost数组和G数组分别记录费用和节点之间的关系
bool vis[MAXN];
void Dijkstra(){
for(int i=;i<=n;++i){//先默认初始化dis和cis为起点到各节点的最短路径和最小费用
dis[i]=G[s][i];
cis[i]=cost[s][i];
}
dis[s]=cis[s]=;vis[s]=true;//到自己的距离为0,且0花费
for(int i=;i<n;++i){ //剩下遍历n-1个节点
int k=-; //先标记为-1
for(int j=;j<=n;++j)//查找dis中的最小权值
if(!vis[j] && (k==- ||dis[j]<dis[k]))k=j;//找到最小权值的下标
if(k==-)break; //说明已经全部归纳了,直接退出当前循环,否则才可以进行下面的松弛操作
vis[k]=true; //该点已经归纳最短路径的集合
for(int j=;j<=n;++j){//更新起点到每个节点的最短路径
if(!vis[j]){ //如果还没有归纳进去
if(dis[j]>dis[k]+G[k][j]){
cis[j]=cis[k]+cost[k][j];
dis[j]=dis[k]+G[k][j];
}
else if(dis[j]==dis[k]+G[k][j] && cis[j]>cis[k]+cost[k][j]) //如果当前多条最短路径,则取两者中较小费用
cis[j]=cis[k]+cost[k][j];
}
}
}
}
int main()
{
while(~scanf("%d %d",&n,&m) && (m+n)){
for(int i=;i<=n;++i){
for(int j=;j<=n;++j)
if(i==j)G[i][j]=cost[i][j]=;//到自身的距离和费用都为0
else G[i][j]=cost[i][j]=INF;//其余初始化为INF
}
memset(vis,false,sizeof(vis));
for(int i=;i<=m;++i){
scanf("%d %d %d %d",&a,&b,&d,&p);
if(G[a][b]>d){//预处理,考虑到重边的情况
G[a][b]=G[b][a]=d;
cost[a][b]=cost[b][a]=p;
}
else if(G[a][b]==d && cost[a][b]>p)//如果a到b的距离等于原来的话,取最小费用
cost[a][b]=cost[b][a]=p;
}
scanf("%d %d",&s,&t);
Dijkstra();
printf("%d %d\n",dis[t],cis[t]);
}
return ;
}

AC代码二(优先队列默认最大堆实现Dijkstra迪杰斯特拉算法):

 #include<bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = ;
int n,m,a,b,d,p,s,t,dis[MAXN],cis[MAXN],cost[MAXN][MAXN],G[MAXN][MAXN];//dis数组记录当前节点离起点的最短路径,cis数组记录当前节点离起点的最小费用,cost数组和G数组分别记录费用和节点之间的关系
void Dijkstra(){
priority_queue< pair<int,int> > que;//最大堆优先队列
dis[s]=cis[s]=;//到自己的距离为0,且0花费
que.push(make_pair(-dis[s],s));//加上负号实现最大堆,便于取出最短路径
while(!que.empty()){
int k=que.top().second;//每次取出队首元素即最短路径
que.pop();//弹出队首元素
for(int i=;i<=n;++i){ //更新邻边权值最小的邻接点
if(dis[i]>dis[k]+G[k][i]){
cis[i]=cis[k]+cost[k][i];
dis[i]=dis[k]+G[k][i];
que.push(make_pair(-dis[i],i)); //如果有最小权值的邻接点,加入队列中去,记得加负号,因为这是最大堆
}
else if(dis[i]==dis[k]+G[k][i] && cis[i]>cis[k]+cost[k][i]) //如果当前多条最短路径,则取两者中较小费用
cis[i]=cis[k]+cost[k][i];
}
}
}
int main()
{
while(~scanf("%d %d",&n,&m) && (m+n)){
for(int i=;i<=n;++i)
dis[i]=cis[i]=INF;//全部初始化为INF无穷大
for(int i=;i<=n;++i){
for(int j=;j<=n;++j)
if(i==j)G[i][j]=cost[i][j]=;//到自身的距离和费用都为0
else G[i][j]=cost[i][j]=INF;//其余初始化为INF
}
for(int i=;i<=m;++i){
scanf("%d %d %d %d",&a,&b,&d,&p);
if(G[a][b]>d){//预处理,考虑到重边的情况
G[a][b]=G[b][a]=d;
cost[a][b]=cost[b][a]=p;
}
else if(G[a][b]==d && cost[a][b]>p)//如果a到b的距离等于原来的话,取最小费用
cost[a][b]=cost[b][a]=p;
}
scanf("%d %d",&s,&t);
Dijkstra();
printf("%d %d\n",dis[t],cis[t]);
}
return ;
}

题解报告:hdu 3790 最短路径问题的更多相关文章

  1. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  2. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  3. HDU 3790最短路径问题 [最短路最小花费]

    题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=3790] 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)  ...

  4. hdu 3790 最短路径问题(双重权值,dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...

  5. hdu 3790 最短路径问题(两个限制条件的最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=3790 有两个条件:距离和花费.首先要求距离最短,距离相等的条件下花费最小. dijkstra,仅仅是在推断条件时 ...

  6. HDU 3790 最短路径问题 (最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 简单的最短路问题,这题听说有重边.我用spfa和dijkstra写了一遍,没判重边,速度都差不多 ...

  7. #HDU 3790 最短路径问题 【Dijkstra入门题】

    题目: 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. hdu 3790 最短路径问题(迪杰斯特拉)

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  9. hdu 3790 最短路径dijkstra(多重权值)

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

随机推荐

  1. web项目的创建

    1) 创建Mave的webapp项目 2) 在Pom文件中添加servlet-api的依赖 <dependency> <groupId>javax.servlet</gr ...

  2. @RequestParam 注解的使用----https://blog.csdn.net/lovincc/article/details/72800117

  3. objective-c 通告

    1. 通告和委托的区别 通告也能传递与事件相关的数据.通告不同于委托的地方在于,通告是在对象执行完成动作之后产生,而不是之前.受到通告的对象没有机会建议是否要执行动作,而且对象的通告可以有多个监听者( ...

  4. cisco路由器上的DHCP

    一.实验拓扑 二.具体配置 Router(config)#do sh run Building configuration...   Current configuration : 604 bytes ...

  5. java编程思想——java IO系统

    一.什么是IO io在本质上是单个字节的移动.而流能够说是字节移动的载体和方式,它不停的向目标处移动数据.我们要做的就是依据流的方向从流中读取数据或者向流中写入数据. 二.java中支持IO操作的库类 ...

  6. C#之快速排序

    算法描述 1.假定数组首位元素为“枢轴”,设定数列首位(begin)与末位(end)索引: 2.由末位索引对应元素与“枢轴”进行比较,如果末位索引对应元素大于“枢轴”元素,对末位索引减一(end--) ...

  7. 【C语言】编写函数实现库函数atof

    //编写函数实现库函数atof #include <stdio.h> #include <assert.h> #include <ctype.h> #include ...

  8. LeetCode 447. Number of Boomerangs (回力标的数量)

    Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of po ...

  9. 5分钟APIG实战: 使用Rust语言快速构建API能力开放

    序言:Rust语言简介 参与过C/C++大型项目的同学可能都经历过因为Null Pointer.Memory Leak等问题“被” 加班了不知道多少个晚上.别沮丧,你不是一个人,Mozilla Fir ...

  10. Codeforces Round #272 (Div. 2) Dreamoon and WiFi 暴力

    B. Dreamoon and WiFi Dreamoon is standing at the position 0 on a number line. Drazil is sending a li ...