题意:

从出发点到目的地往返一次,道路i连接着ai号和bi号,长度为ci。同一条路只能走一次,求最小路径长度。

分析:

如果没有往返,那么就是简单的最短路问题。如果规定严格从左到右,那么就是简单的双调旅行商问题。对于本题,同样还是将往返看成是从出发地开始的两条没有公共边的路径,便可以转化为求流量为2的最小费用流了~注意边为无向边

代码:

#include<cstdio>
#include<vector>
#include<iostream>
#include<queue>
using namespace std;
#define se second
#define fi first
typedef pair<int, int>pii;//first 顶点距离,secon顶点编号
struct edge{int to, cap, cost, rev;};
const int maxn = 20005, INF =0x3fffffff;
int V, s, t;
vector<edge>G[maxn];
int dist[maxn], prevv[maxn], preve[maxn], h[maxn];//h记录顶点的势
void add_edge(int from, int to, int cap, int cost)
{
G[from].push_back((edge){to, cap, cost, G[to].size()});
G[to].push_back((edge){from, 0, -cost, G[from].size() - 1});
}
int min_cost_flow(int s, int f)
{
int res = 0;
fill(h, h + V + 1, 0);
while(f > 0){
priority_queue<pii, vector<pii>, greater<pii> >que;
fill(dist, dist + V + 1, INF);
dist[s] = 0;
que.push(pii(0, s));
while(!que.empty()){
pii p = que.top();que.pop();
int v = p.se;
if(dist[v] < p.fi) continue;
for(int i = 0; i < G[v].size(); i++){
edge &e = G[v][i];
if(e.cap>0&&dist[e.to]>dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v; preve[e.to] = i;
que.push(pii(dist[e.to], e.to));
}
}
}
if(dist[t] == INF) return -1;
for(int i = 1; i <= V; i++) h[i] +=dist[i];
int d = f;
for(int v = t; v != s; v = prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for(int v = t; v!= s; v = prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main (void)
{
int m;scanf("%d%d",&V, &m);
int a, b, c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a, &b, &c);
add_edge(a, b, 1, c);
add_edge(b, a, 1, c);
}
s = 1, t = V;
printf("%d\n",min_cost_flow(s,2));
}

POJ 2135_Farm Tour的更多相关文章

  1. POJ Farm Tour

    Farm Tour 题目: 约翰有N块地,家在1号,而N号是个仓库.农场内有M条道路(双向的),道路i连接这ai号地和bi号地,长度为ci. 约翰希望依照从家里出发,经过若干地后达到仓库.然后再返回家 ...

  2. 最小费用最大流模板(POJ 2135-Farm Tour)

    最近正好需要用到最小费用最大流,所以网上就找了这方面的代码,动手写了写,先在博客里存一下~ 代码的题目是POJ2135-Farm Tour 需要了解算法思想的,可以参考下面一篇文章,个人觉得有最大流基 ...

  3. UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)

    Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane a ...

  4. POJ 2677 Tour

    题意:双调欧几里得旅行商问题.算法导论15-1题,从最左边的点严格从左走到右再从右走到左回到起点,所有点都要走且只走一次,求最短路径. 解法:定义dp[i][j]表示从i走到j的双调路径,分为两种情况 ...

  5. ACM - 动态规划专题 题目整理

    CodeForces 429B  Working out 预处理出从四个顶点到某个位置的最大权值,再枚举相遇点,相遇的时候只有两种情况,取最优解即可. #include<iostream> ...

  6. [SinGuLaRiTy] 动态规划题目复习

    [SinGuLaRiTy-1026] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [UVA 1025] A Spy in the Metr ...

  7. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  8. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  9. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

随机推荐

  1. 关于使用myeclipse搭建tomcat环境运行web项目的方法

    这两天准备改同事的一个系统的自适应,然而我没想到的是我竟然在打开这个项目上就遇到了困难,真的是too young too simple,究其根本就是了解的太少了,于是为了我不忘记,用博客的方式把它记录 ...

  2. Hadoop YARN学习之重要术语总结(6)

    Hadoop YARN学习之重要术语总结(6) - SLA服务等级 - RM(ResourceManager) - AM(ApplicationMaster) - NM(NodeMaster) - M ...

  3. sh/bash/csh/Tcsh/ksh/pdksh等shell本质区别

    sh/bash/csh/Tcsh/ksh/pdksh等shell本质区别 1. Shell脚本的书写 在写Shell脚本时,往往第一行要注明用什么解释器来解释这个脚本. 如#!/bin/bash即用/ ...

  4. Android学习笔记(七) 布局基础

    一.概念 控件布局方法,就是指控制控件在Activity当中的位置.大小.颜色以及其他控件样式属性的方法.有两种方法可以控制布局: 在布局文件(xxx.xml)中完成控件的布局. 在JAVA代码中完成 ...

  5. Eclipse打包多渠道包(库工程版)

    请先移步多渠道打包http://www.cnblogs.com/bhm666/p/6438776.html 自从上次使用了Gradle打渠道包后,遇到了各种各样的问题,不过也是小问题,仍然在几个项目上 ...

  6. nginx php 配置模板

    server {     listen 80;     server_name    www.xxx.com;     #access_log     logs/www.xxx.com.access. ...

  7. C/C++ new/delete []、内存泄漏、动态数组

    一.概念 new/delete是用于动态分配和撤销内存的运算符.new/delete是c++里才有的,c中是用malloc和free,c++虽然也可以用,但是不建议用.当我们使用关键字new在堆上动态 ...

  8. ALTER OPERATOR CLASS - 修改一个操作符表的定义

    SYNOPSIS ALTER OPERATOR CLASS name USING index_method RENAME TO newname DESCRIPTION 描述 ALTER OPERATO ...

  9. 如何把datetime类型字段修改为int类型

    如何把datetime类型字段修改为int类型 我有一个表为:table1 其中有一个datetime类型的字段  a    现在我想我想把字段a的类型改为int类型 当我执行以下命令时报如下的错误a ...

  10. HNOI 2010 物品调度 并查集 置换

    题意: 题意有点细,暂不概括.请仔细审题. 分析: 我们先要把c生成出来. 记得颜神讲这道题,首先表明,这道题有两个问题需要处理. 第一个是要先定位,第二个是要求最小移动步数. 定位时对于每一个物品i ...