题意:

从出发点到目的地往返一次,道路i连接着ai号和bi号,长度为ci。同一条路只能走一次,求最小路径长度。

分析:

如果没有往返,那么就是简单的最短路问题。如果规定严格从左到右,那么就是简单的双调旅行商问题。对于本题,同样还是将往返看成是从出发地开始的两条没有公共边的路径,便可以转化为求流量为2的最小费用流了~注意边为无向边

代码:

#include<cstdio>
#include<vector>
#include<iostream>
#include<queue>
using namespace std;
#define se second
#define fi first
typedef pair<int, int>pii;//first 顶点距离,secon顶点编号
struct edge{int to, cap, cost, rev;};
const int maxn = 20005, INF =0x3fffffff;
int V, s, t;
vector<edge>G[maxn];
int dist[maxn], prevv[maxn], preve[maxn], h[maxn];//h记录顶点的势
void add_edge(int from, int to, int cap, int cost)
{
G[from].push_back((edge){to, cap, cost, G[to].size()});
G[to].push_back((edge){from, 0, -cost, G[from].size() - 1});
}
int min_cost_flow(int s, int f)
{
int res = 0;
fill(h, h + V + 1, 0);
while(f > 0){
priority_queue<pii, vector<pii>, greater<pii> >que;
fill(dist, dist + V + 1, INF);
dist[s] = 0;
que.push(pii(0, s));
while(!que.empty()){
pii p = que.top();que.pop();
int v = p.se;
if(dist[v] < p.fi) continue;
for(int i = 0; i < G[v].size(); i++){
edge &e = G[v][i];
if(e.cap>0&&dist[e.to]>dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v; preve[e.to] = i;
que.push(pii(dist[e.to], e.to));
}
}
}
if(dist[t] == INF) return -1;
for(int i = 1; i <= V; i++) h[i] +=dist[i];
int d = f;
for(int v = t; v != s; v = prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for(int v = t; v!= s; v = prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main (void)
{
int m;scanf("%d%d",&V, &m);
int a, b, c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a, &b, &c);
add_edge(a, b, 1, c);
add_edge(b, a, 1, c);
}
s = 1, t = V;
printf("%d\n",min_cost_flow(s,2));
}

POJ 2135_Farm Tour的更多相关文章

  1. POJ Farm Tour

    Farm Tour 题目: 约翰有N块地,家在1号,而N号是个仓库.农场内有M条道路(双向的),道路i连接这ai号地和bi号地,长度为ci. 约翰希望依照从家里出发,经过若干地后达到仓库.然后再返回家 ...

  2. 最小费用最大流模板(POJ 2135-Farm Tour)

    最近正好需要用到最小费用最大流,所以网上就找了这方面的代码,动手写了写,先在博客里存一下~ 代码的题目是POJ2135-Farm Tour 需要了解算法思想的,可以参考下面一篇文章,个人觉得有最大流基 ...

  3. UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)

    Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane a ...

  4. POJ 2677 Tour

    题意:双调欧几里得旅行商问题.算法导论15-1题,从最左边的点严格从左走到右再从右走到左回到起点,所有点都要走且只走一次,求最短路径. 解法:定义dp[i][j]表示从i走到j的双调路径,分为两种情况 ...

  5. ACM - 动态规划专题 题目整理

    CodeForces 429B  Working out 预处理出从四个顶点到某个位置的最大权值,再枚举相遇点,相遇的时候只有两种情况,取最优解即可. #include<iostream> ...

  6. [SinGuLaRiTy] 动态规划题目复习

    [SinGuLaRiTy-1026] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [UVA 1025] A Spy in the Metr ...

  7. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  8. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  9. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

随机推荐

  1. 配置Oracle监听器

    Oracle的监听和网络服务都可以在Net Manager中配置,如下图.也可以在上面的那个Net Configuration Assistant中配置,只是Net Manager比较方便些. Ora ...

  2. 工作记录 主要了解EF 列注释DataAnnotations

    遇到一个问题,是子类型必须完全转换为父类型,普通的显示转化.隐式转化.Cast.ConvertAll等方法无效,用Newtonsoft.Json转化才解决 var json = JsonConvert ...

  3. javascript中闭包与作用域的理解

    很多js的框架与插件编写都用到了闭包,所以,阅读和掌握闭包很有必要.最近学习vue框架时,经常会猜想很多功能的native js实现,很多都应用到了闭包,闭包除了目前已知的一些特性,如:可以保持局部变 ...

  4. jQuery 小实例 关于按字母排序

    jQuery的强大再次不再赘述 一般情况下操作表格式数据的一种最常见的任务就是排序,在一个大型的表格中,能够对要寻找的信息进行重新排列是非常重要的,一般情况用来完成排序的方式有两种 :一种是服务器端排 ...

  5. date - 打印或设置系统日期和时间

    总览 date [选项]... [+格式] date [选项] [MMDDhhmm[[CC]YY][.ss]] 描述 根据指定格式显示当前时间或设置系统时间. -d, --date=STRING 显示 ...

  6. CAD交互绘制样条线(com接口)

    在CAD设计时,需要绘制样条线,用户可以设置样条线线重及颜色等属性. 主要用到函数说明: _DMxDrawX::SendStringToExecuteFun 把命令当着函数执行,可以传参数.详细说明如 ...

  7. Python应该怎样实现快速入门?

    作为一名Python爱好者,我也想跟大家分享分享我自学Python的一些小经验.搬来你的小板凳,听听看吧.也许,你会很有收获,也许你也走上了自学Python的不归路.开讲啦~ 首先,你要有自信心,要明 ...

  8. MFC定时器的使用

    巧妙地使用定时器能达到意想不到的效果,写界面的时候能实现渐变,也能帮助多线程控制等我们知道,在VC的MFC中,已经为我们封装好了很多全面和强大的函数集,所以在MFC编程时,巧妙地调用MFC函数库可以为 ...

  9. POJ 1664 放苹果( 递推关系 )

    链接:传送门 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n 和 m 的关系可以进一步分析: 特殊的 n = 1 || ...

  10. Go:错误处理

    在默认情况下,当程序发生错误(panic)后,程序就会退出(崩溃),所以我们希望,当程序发生错误后,可以捕获到错误,并进行处理,保证程序可以继续执行.比如捕获到错误后,打入日志或给管理员一个提示(邮件 ...