递推+环状特殊处理+高精度

 
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; int n;
int f[105][50],sum[50]; void mul(int* a,int* b,int x)
{
a[0]=max(a[0],b[0]);
for (int i=1;i<=b[0];i++)
a[i]+=x*b[i];
for (int i=1;i<=a[0];i++)
if (a[i]>=10)
{
if (i==a[0])
a[0]++;
a[i+1]+=a[i]/10;
a[i]%=10;
}
} int main()
{
scanf("%d",&n);
f[0][0]=f[0][1]=1;
for (int i=1;i<n;i++)
for (int j=1;j<=i;j++)
mul(f[i],f[i-j],j);
for (int i=1;i<=n;i++)
mul(sum,f[n-i],i*i);
for (int i=sum[0];i>=1;i--)
printf("%d",sum[i]);
return 0;
}

  

 
 
另外有一种方法

记f[n]为n轮状的答案

观察下列式子

f[1]=1=1*1

f[2]=5=5*1*1

f[3]=16=4*4

f[4]=45=5*3*3

f[5]=121=11*11

f[6]=320=5*8*8

可以发现,n为奇数时,f[n]=F[n]*F[n]。

n为偶数时,f[n]=5*F[n]*F[n]。

其中F[n]=F[n-1]*3-F[n-2],F[1]=1,F[2]=4.

再加上高精度

【bzoj1002】 [FJOI2007]轮状病毒DP的更多相关文章

  1. BZOJ1002: [FJOI2007]轮状病毒 (DP)

    标准做法似乎应该是计算生成树数量的基尔霍夫矩阵之类的.. 我看到的做法是一个神奇的高精度dp,当然以后这个blahblahblah矩阵还是要搞一下..   参考(抄袭)网址   这个dp的原理就是把环 ...

  2. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  3. [bzoj1002][FJOI2007]轮状病毒_递推_高精度

    轮状病毒 bzoj-1002 FJOI-2007 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2 ...

  4. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

  5. BZOJ1002[FJOI2007]轮状病毒

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  6. [bzoj1002][FJOI2007 轮状病毒] (生成树计数+递推+高精度)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  7. [BZOJ1002] [FJOI2007] 轮状病毒 (数学)

    Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...

  8. [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】

    题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...

  9. bzoj1002: [FJOI2007]轮状病毒 生成树计数

    轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...

随机推荐

  1. Android Studio 入门 Hello World

    Android Studio 入门 Hello World Gavin要加油 1.5k 6月22日 发布 推荐 1 推荐 收藏 17 收藏,2.1k 浏览 引言 前两天开始学习android开发,本来 ...

  2. sharepoint services

    I have got solution for authentication to share point web service I have use fedAuth Cookie and rtfa ...

  3. arx 移动界面到一点

    AcDbViewTableRecord view; AcGePoint3d max = acdbHostApplicationServices()->workingDatabase()-> ...

  4. 习题练习(视觉slam14讲课后习题)

    设有⼩萝⼘1⼀号和⼩萝⼘⼆号位于世界坐标系中. ⼩萝⼘⼀号的位姿为:q1 = [0.55, 0.3, 0.2, 0.2], t1 = [0.7, 1.1, 0.2]T(q 的第⼀项为实部).这⾥的 q ...

  5. 诊断:ORA-38760: This database instance failed to turn on flashback database

    $ oerr ora 38760 38760, 00000, "This database instance failed to turn on flashback database&quo ...

  6. [Luogu] P4254 [JSOI2008]Blue Mary开公司

    题目背景 Blue Mary 最近在筹备开一家自己的网络公司.由于他缺乏经济头脑,所以先后聘请了若干个金融顾问为他设计经营方案. 题目描述 万事开头难,经营公司更是如此.开始的收益往往是很低的,不过随 ...

  7. LinuxMint19.1安装搜狗拼音输入法

    Installation 1.到搜狗拼音输入法官网下载Linux版. 2.使用dpkg命令安装deb软件包 $ sudo dpkg -i sogoupinyin_2.2.0.0108_amd.deb ...

  8. Mysql Group by 分组取最小的实现方法

    表结构如下图:

  9. AtCoder Beginner Contest 131 Solution

    前言 这次ABC还是有一点难度的吧. TaskA Security Solution 直接模拟就好了. Code /* mail: mleautomaton@foxmail.com author: M ...

  10. IOC控制反转之Autofac

    https://www.jianshu.com/p/1b6cb076e2e5 博主:衡泽_徐峰 Autofac官网:https://autofac.org/ Autofac 是.Net非常好的一个IO ...