洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值。最小和最大值的求法类似。
单调队列做法:
以最小值为例:
q1[i][j]表示第i行上,从j列开始的n列的最小值。
$q1[i][j]=min(x[i][j],x[i][j+1],...,x[i][j+n-1])$
$q1[i][1]=min(x[i][1],x[i][2],...,x[i][n])$
$q1[i][2]=min(x[i][2],x[i][3],...,x[i][n+1])$
类似滑动窗口,因此直接枚举行,对于每一行单调队列处理即可。
q2[i][j]表示以第i行第j列为左上角的边长为n的矩阵的最小值
$q2[i][j]=min(q1[i][j],q1[i+1][j],...,q1[i+n-1][j])$
$q2[1][j]=min(q1[1][j],q1[2][j],...,q1[n][j])$
$q2[2][j]=min(q1[2][j],q1[3][j],...,q2[n+1][j])$
显然又可以用单调队列处理。总时间复杂度$O(n^2)$
(额外)更简短的做法(二维ST表,$O(n^2\;log\;n)$):
(由于要求的是正方形,因此可以$O(n^2\;log\;n)$,一般应该是$O({(n\;log\;n)}^2)$)
用f[i][j][k]来表示横纵坐标分别为i,j开始到i+2^k-1,j+2^k-1的整个矩阵(正方形)中的最大值
https://www.luogu.org/wiki/show?name=%E9%A2%98%E8%A7%A3+P2216
笔记:
1.这道题一开始想到了可能跟单调队列有关系,但是并没有想清楚。想了很久后,把q1和q2的关系式列了出来,一切就明朗了。
2.求最小值的单调队列队首(l)最小,队尾(r)最大,l<r。求最大值的单调队列队首(l)最大,队尾(r)最小,l<r。
求最小值的单调队列
2 3 5 4 6 1
1. 2
2. 2 3
3. 2 3 5
4. 2 3 4
5. 2 3 4 6
6. 1
3.单调队列的调试还算方便,只需要开着对单调队列的变量查看,观察内部元素是否正常就行了。
#include<cstdio>
#define min(a,b) ((a)>(b)?(b):(a))
typedef long long LL;
LL a,b,n;
LL x[][];
LL q1min[][],q1max[][],q2min[][],q2max[][];
LL tmpmin[],tmpmax[],lmin,rmin,lmax,rmax,anss=0x3f3f3f3f3f3f3f3f;
int main()
{
LL i,j;
scanf("%lld%lld%lld",&a,&b,&n);
for(i=;i<=a;i++)
for(j=;j<=b;j++)
scanf("%lld",&x[i][j]);
for(i=;i<=a;i++)
{
lmin=rmin=lmax=rmax=;
for(j=;j<=n;j++)
{
while(rmin>lmin&&x[i][tmpmin[rmin-]]>=x[i][j]) rmin--;
tmpmin[rmin++]=j;
while(rmax>lmax&&x[i][tmpmax[rmax-]]<=x[i][j]) rmax--;
tmpmax[rmax++]=j;
}
q1min[i][]=x[i][tmpmin[lmin]];
q1max[i][]=x[i][tmpmax[lmax]];
for(j=n+;j<=b;j++)
{
if(rmin>lmin&&tmpmin[lmin]<=j-n) lmin++;
if(rmax>lmax&&tmpmax[lmax]<=j-n) lmax++;
while(rmin>lmin&&x[i][tmpmin[rmin-]]>=x[i][j]) rmin--;
tmpmin[rmin++]=j;
while(rmax>lmax&&x[i][tmpmax[rmax-]]<=x[i][j]) rmax--;
tmpmax[rmax++]=j;
q1min[i][j-n+]=x[i][tmpmin[lmin]];
q1max[i][j-n+]=x[i][tmpmax[lmax]];
}
}
for(i=;i<=b;i++)
{
lmin=rmin=lmax=rmax=;
for(j=;j<=n;j++)
{
while(rmin>lmin&&q1min[tmpmin[rmin-]][i]>=q1min[j][i]) rmin--;
tmpmin[rmin++]=j;
while(rmax>lmax&&q1max[tmpmax[rmax-]][i]<=q1max[j][i]) rmax--;
tmpmax[rmax++]=j;
}
q2min[][i]=q1min[tmpmin[lmin]][i];
q2max[][i]=q1max[tmpmax[lmax]][i];
for(j=n+;j<=a;j++)
{
if(rmin>lmin&&tmpmin[lmin]<=j-n) lmin++;
if(rmax>lmax&&tmpmax[lmax]<=j-n) lmax++;
while(rmin>lmin&&q1min[tmpmin[rmin-]][i]>=q1min[j][i]) rmin--;
tmpmin[rmin++]=j;
while(rmax>lmax&&q1max[tmpmax[rmax-]][i]<=q1max[j][i]) rmax--;
tmpmax[rmax++]=j;
q2min[j-n+][i]=q1min[tmpmin[lmin]][i];
q2max[j-n+][i]=q1max[tmpmax[lmax]][i];
}
}
for(i=;i<=a-n+;i++)
for(j=;j<=b-n+;j++)
anss=min(anss,q2max[i][j]-q2min[i][j]);
printf("%lld",anss);
return ;
}
洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列的更多相关文章
- 洛谷 P2216 [HAOI2007]理想的正方形
P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- 洛谷P2216 HAOI2007 理想的正方形 (单调队列)
题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...
- 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解
算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...
- [洛谷P2216][HAOI2007]理想的正方形
题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...
- BZOJ1047或洛谷2216 [HAOI2007]理想的正方形
BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...
- 洛谷 P2216 [HAOI2007]理想正方形
洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...
- 洛谷 2216 [HAOI2007]理想的正方形
题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...
随机推荐
- jquery 深入学习笔记之中的一个 (事件绑定)
[jquery 事件绑定] 1.加入元素事件绑定 (1) 加入事件为当前元素 $('p').on('click',function(){ //code here ... }); (2) 加入事件为未来 ...
- Android Menu开源项目整合工程
本实例整合了关于Android Menu的优秀开源代码,方便有需要用到Menu开源项目的小伙伴使用. 一.整合的项目有: SlidingMenu:https://github.com/jfeinste ...
- HDOJ1004 数组还要自己初始化
#include <iostream> #include <stdio.h> #include "string.h"using namespace std; ...
- redis的图形界面管理工具
大部分人都知道redis是一款用在缓存服务器上的软件,它与memcache类似,都可以存储海量的数据,用在大访问量的web网站.聊天记录存放等方面,但是又与memcache不同: 1.缓存数据可以持久 ...
- oracle中去掉文本中的换行符、回车符、制表符
一.特殊符号ascii定义 制表符 chr(9) 换行符 chr(10) 回车符 chr(13) UPDATE tc_car_order set USE_REASON = REPLACE('USE ...
- vue中引入字体文件
在用vue来写一官网的时候,想引入外部字体文件,毕竟总感觉他自己的字体有点难看,在这里记录下 1.先下载字体文件所需的.ttf文件 我这里想引入的是华文行楷字体 百度后下载了一个3M多的ttf文件 2 ...
- 网络编程、三要素、Socket通信、UDP传输、TCP协议、服务端(二十五)
1.网络编程概述 * A:计算机网络 * 是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传 ...
- LoadRunner检查点使用小结
LR中检查点有两种:图片和文字. 常用检查点函数如下: 1)web_find()函数用于从 HTML 页中搜索指定的文本字符串: 2)web_reg_find()函数注册一个请求,以在下一个操作函数( ...
- MYSQL进阶学习笔记五:MySQL函数的创建!(视频序号:进阶_13)
知识点六:MySQL函数的创建(13) 内置函数: 自定义函数: 首先查看是否已经开启了创建函数的功能: SHOW VARIABLES LIKE ‘%fun%’; 如果变量的值是OFF,那么需要开启 ...
- PHP加密方式。 base!base!base!
PHP中的加密方式有如下几种 1. MD5加密 string md5 ( string $str [, bool $raw_output = false ] ) 参数 str -- 原始字符串. ...