[UOJ#129][BZOJ4197][Noi2015]寿司晚宴
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴
试题描述
为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。
输入
输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。
输出
输出一行包含 1 个整数,表示所求的方案模 p 的结果。
输入示例
输出示例
数据规模及约定
2≤n≤500
0<p≤1000000000
题解
果然还是第三题最厉害。
根据“互质”这个条件,我们发现每个数可以用它的质因数表示即可。然后发现一个性质:每个数最多有一个质因数大于 sqrt(500);而小于 sqrt(500) 的质数又只有 8 个。
根据以上性质,我们就可以进行状压 dp 了。
首先对 2 到 n 的每个数处理出两个值:big 最大质因数(若这个质因数小于 sqrt(500) 则 big = 1),s 这个数包含较小质因数的集合(易知 s 是一个 8 位的二进制);
现在我们再读一遍题,问题就转化成了给每个数进行三种决定(把它给小 G,给小 W,或都不给),满足小 G、小 W 拿到的数的质因子没有交集;
对于小于 sqrt(500) 部分的质因子显然可以状压解决,对于那些含有大于 sqrt(500) 的质因子的数我们把它们按 big 值分类,那么每一类中的数的主人必须是同一个,或者没有主人。
分析到这里,怎样 dp 应该很明了了吧。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 510
#define maxs 256 int n, MOD, f[maxn][3][maxs][maxs], prime[] = {2, 3, 5, 7, 11, 13, 17, 19}; struct Num {
int big, s; bool operator < (const Num& t) const { return big < t.big; } void getNum(int x) {
s = 0;
for(int i = 0; i < 8; i++) if(x % prime[i] == 0) {
s |= (1 << i);
while(x % prime[i] == 0) x /= prime[i];
}
big = x;
return ;
}
} ns[maxn]; int main() {
n = read(); MOD = read(); for(int i = 2; i <= n; i++) ns[i].getNum(i);
sort(ns + 2, ns + n + 1);
int all = (1 << 8) - 1;
f[1][0][0][0] = 1;
ns[1].big = 1;
for(int i = 1; i < n; i++)
for(int cho = 0; cho < 3; cho++)
for(int s1 = 0; s1 <= all; s1++)
for(int s2 = 0; s2 <= all; s2++) if(!(s1 & s2) && f[i][cho][s1][s2]) {
int tmp = f[i][cho][s1][s2];
if(ns[i+1].big == 1) {
(f[i+1][0][s1|ns[i+1].s][s2] += tmp) %= MOD;
(f[i+1][0][s1][s2|ns[i+1].s] += tmp) %= MOD;
(f[i+1][0][s1][s2] += tmp) %= MOD;
}
else if(ns[i+1].big == ns[i].big) {
if(cho == 0) {
(f[i+1][0][s1][s2] += tmp) %= MOD;
(f[i+1][1][s1|ns[i+1].s][s2] += tmp) %= MOD;
(f[i+1][2][s1][s2|ns[i+1].s] += tmp) %= MOD;
}
if(cho == 1) (f[i+1][1][s1|ns[i+1].s][s2] += tmp) %= MOD, (f[i+1][1][s1][s2] += tmp) %= MOD;
if(cho == 2) (f[i+1][2][s1][s2|ns[i+1].s] += tmp) %= MOD, (f[i+1][2][s1][s2] += tmp) %= MOD;
}
else {
(f[i+1][0][s1][s2] += tmp) %= MOD;
(f[i+1][1][s1|ns[i+1].s][s2] += tmp) %= MOD;
(f[i+1][2][s1][s2|ns[i+1].s] += tmp) %= MOD;
}
} int ans = 0;
for(int cho = 0; cho < 3; cho++)
for(int s1 = 0; s1 <= all; s1++)
for(int s2 = 0; s2 <= all; s2++)
if(!(s1 & s2)) (ans += f[n][cho][s1][s2]) %= MOD;
printf("%d\n", ans); return 0;
}
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴的更多相关文章
- [BZOJ4197][Noi2015]寿司晚宴
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 412 Solved: 279[Submit][Status] ...
- BZOJ4197 [Noi2015]寿司晚宴 【状压dp】
题目链接 BZOJ4197 题解 两个人选的数都互质,意味着两个人选择了没有交集的质因子集合 容易想到将两个人所选的质因子集合作为状态\(dp\) \(n\)以内质数很多,但容易发现\(\sqrt{n ...
- bzoj4197 [Noi2015]寿司晚宴——状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...
- UOJ 129/BZOJ 4197 寿司晚宴 状压DP
//By SiriusRen #include <cstdio> #include <algorithm> using namespace std; ; struct Node ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- 【BZOJ-4197】寿司晚宴 状压DP
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 694 Solved: 440[Submit][Status] ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划
BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
随机推荐
- 关于sqlserver帐号被禁用问题
若发现sqlsrver所有帐号不小心被禁用了,这个时候怎么办?用重装吗?不用,仔细看小白是怎么一步一步解开这个谜题的.首先需要Windows帐号设置里重新添加一个新帐号.并将其添加到管理员组里面,然后 ...
- java字符串拼接技巧(StringBuilder使用技巧)
在平时的开发中,我们可能会遇到需要拼接如下格式的字符串(至少我是遇到了很多次): 1,2,3,4,5,6,7,8,9,10,11,12,12,12,12,34,234,2134,1234,1324,1 ...
- bsub && lsf 介绍
文章转载地址:http://www.bbioo.com/lifesciences/40-114265-1.html LSF系统介绍 http://scc.ustc.edu.cn/zh_CN/ 中科大超 ...
- Educational Codeforces Round 12补题 经典题 再次爆零
发生了好多事情 再加上昨晚教育场的爆零 ..真的烦 题目链接 A题经典题 这个题我一开始推公式wa 其实一看到数据范围 就算遍历也OK 存在的问题进制错误 .. 思路不清晰 两个线段有交叉 并不是端点 ...
- CAD交互绘制mcdbsolid对象(网页版)
主要用到函数说明: _DMxDrawX::DrawSolid 绘McDbSolid对象.详细说明如下: 参数 说明 DOUBLE dX1 第一个点X DOUBLE dY1 第一个点Y DOUBLE d ...
- nyoj-47-过河问题|POJ-1700-Crossing River
http://acm.nyist.net/JudgeOnline/problem.php?pid=47 http://poj.org/problem?id=1700 解题思路:求最少需要多少时间才能都 ...
- 多数据源连接Oracle报错,linux熵池耗尽问题
最近碰到了个很有意思的问题,springboot加载多数据源,遇到了在启动时数据库连接报错的问题. 报错信息: The error occurred while executing a query 然 ...
- iOS UIView中的坐标转换convertPoint --- iOS开发系列 ---项目中成长的知识六
如果你的UITableViewCell里面有一个Button需要响应事件,你会怎么做? 在Controller中使用 button父类的父类? 例如:UITableViewCell *parent ...
- JS面试题--使用for循环打印1-10,每个数字出现的间隔约500ms
又来刷面试题啦,哈哈. 要求:使用for循环打印1-10,每个数字出现的间隔约500ms. 分析:考察点--闭包,块级作用域 方式一.使用闭包+立即执行函数,自己当时的思路也是这样想的,但是,结果却没 ...
- webpack hmr
参考: https://webpack.js.org/concepts/hot-module-replacement/ https://webpack.js.org/guides/hot-module ...