传送门

网络流的建图真的好难!

将一个点拆分成多个点的思想还需要加强。

题解

代码和题解中的图略不一样。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 1000001 using namespace std; int n, m, cnt, s, t;
int head[N], to[N], nex[N], val[N], cost[N], dis[N], pre[N], path[N];
bool vis[N];
double tim; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void add(int x, int y, int z, int v)
{
to[cnt] = y;
val[cnt] = z;
cost[cnt] = v;
nex[cnt] = head[x];
head[x] = cnt++;
} inline bool spfa()
{
int i, u, v;
queue <int> q;
memset(vis, 0, sizeof(vis));
memset(pre, -1, sizeof(pre));
memset(dis, 127, sizeof(dis));
q.push(s);
dis[s] = 0;
while(!q.empty())
{
u = q.front();
vis[u] = 0;
q.pop();
for(i = head[u]; ~i; i = nex[i])
{
v = to[i];
if(val[i] && dis[v] > dis[u] + cost[i])
{
dis[v] = dis[u] + cost[i];
pre[v] = u;
path[v] = i;
if(!vis[v])
{
q.push(v);
vis[v] = 1;
}
}
}
}
return pre[t] != -1;
} int main()
{
int i, j, k, x, f;
m = read();
n = read();
s = 0, t = n + n * m + 1;
memset(head, -1, sizeof(head));
for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)
{
x = read();
for(k = 1; k <= n; k++)
{
add((k - 1) * m + j, i + n * m, 1, k * x);
add(i + n * m, (k - 1) * m + j, 0, -k * x);
}
add(s, j + (i - 1) * m, 1, 0);
add(j + (i - 1) * m, s, 0, 0);
}
for(i = 1; i <= n; i++)
{
add(i + n * m, t, 1, 0);
add(t, i + n * m, 0, 0);
}
while(spfa())
{
f = 1e9;
for(i = t; i != s; i = pre[i]) f = min(f, val[path[i]]);
tim += dis[t];
for(i = t; i != s; i = pre[i])
{
val[path[i]] -= f;
val[path[i] ^ 1] += f;
}
}
printf("%.2lf\n", double(tim / n));
return 0;
}

  

[luoguP2053] [SCOI2007]修车(最小费用最大流)的更多相关文章

  1. BZOJ1070[SCOI2007]修车——最小费用最大流

    题目描述 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待 ...

  2. BZOJ 1070: [SCOI2007]修车 [最小费用最大流]

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 4936  Solved: 2032[Submit][Status] ...

  3. BZOJ-1070 修车 最小费用最大流+拆点+略坑建图

    1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3624 Solved: 1452 [Submit][Status] ...

  4. bzoj 1070 [SCOI2007]修车(最小费用最大流)

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3515  Solved: 1411[Submit][Status] ...

  5. BZOJ1070: [SCOI2007]修车(最小费用最大流,思维)

    Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...

  6. 洛谷 P2053 [SCOI2007]修车(最小费用最大流)

    题解 最小费用最大流 n和m是反着的 首先, \[ ans = \sum{cost[i][j]}*k \] 其中,\(k\)为它在当前技术人员那里,排倒数第\(k\)个修 我们可以对于每个技术人员进行 ...

  7. bzoj 1070: [SCOI2007]修车【最小费用最大流】

    一开始从客人角度想的,怎么建都不对 从一个修车工所接待的所有顾客花费的总时间来看,设一共有x个人,那么第一个修的对总时间的贡献是x*w1,第二个是(x-1)*w2-以此类推.所以把第i个修车工拆成n组 ...

  8. BZOJ_1070_[SCOI2007]修车_费用流

    BZOJ_1070_[SCOI2007]修车_费用流 Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间 ...

  9. [BZOJ 1070] [SCOI2007] 修车 【费用流】

    题目链接:BZOJ - 1070 题目分析 首先想到拆点,把每个技术人员拆成 n 个点,从某个技术人员拆出的第 i 个点,向某辆车连边,表示这是这个技术人员修的倒数第 i 辆车.那么这一次修车对整个答 ...

  10. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

随机推荐

  1. Java多态的应用

    //多态的应用 class Animal{     public void eat(){     } } class Dog extends Animal{     public void eat() ...

  2. 修改本地dns域名对应的 ip

    C:\Windows\System32\drivers\etc 打开 hosts 文件 在浏览器 访问 http://a.com,就相当于访问 127.0.0.2 这个ip了

  3. Exoplanet: The hunt is on

    原文 How many planets are out there? Today scientists believe that planets could outnumber the stars.F ...

  4. C#反射调用小DEMO

    程序集的源代码: namespace DesignMode { class IOCTest { public void TestO() { Console.WriteLine("O方法&qu ...

  5. 51nod 1412 AVL数的种类(DP

    题意给了n个节点 问AVL树的种类 卧槽 真的好傻 又忘记这种题可以打表了  就算n^3 也可以接受的 树的深度不大 那么转移方程很明显了 dp[i][j]   代表的是节点为n深度为j的树的种类 k ...

  6. crontab 应用

    可以用crontab -e 添加要执行的命令. 命令执行的结果,无论是标准输出还是错误输出,都将以邮件形式发给用户.            添加的命令必须以如下格式:    * * * * * /co ...

  7. CAD命令标志

    CAD命令标志 主标识:(常用的)ACRX_CMD_MODAL 在别的命令执行的时候该命令不会在其中执行.ACRX_CMD_TRANSPARENT 命令可以再其它命令中执行,但在该标志下ads_sss ...

  8. MFC:AfxParseURL

    BOOL AFXAPI AfxParseURL(     LPCTSTR pstrURL,     DWORD& dwServiceType,     CString& strServ ...

  9. 多线程下载命令--axel

    axel是轻量级多线程下载工具,对比传统下载工具curl和wget,下载速度上提升不少 centos安装如下 yum install -y axel 命令行用法 axel [option] url1 ...

  10. [BZOJ2938]病毒 (AC自动机+dfs)

    题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...