[Poi2010]Bridges 最大流+二分答案 判定混合图欧拉回路
https://darkbzoj.cf/problem/2095
bzoj 相同的题挂了,这个oj可以写。
题目就是要我们找一条欧拉回路(每个桥经过一次就好,不管方向),使得这条回路上权值最大的尽量小
二分答案是显然的,关键是如何check
每次二分一个mid,大于mid的边都不选,那么就有一些方向不能走了,原图就是一个混合图,问题就转化成了一个混合图判定欧拉回路问题(如果有一条边两个方向都不能走,那肯定不存在欧拉回路)
对于那些单向边,直接统计度数就可以。对于两个方向都可以走的边,先随便定一个方向,假设是u->v,统计度数,并且在网络图里加一条边u->v,流量为1。
最后遍历所有的点u,如果入度与出度之差为奇数,显然无解(某一次进去就出不来了,或者出来就进不去了)
如果u出度大于入度,那么加边S->u,流量(out-in)/2 就是要调整多少条边
如果u入度大于出度,那么加边u->T,流量(in-out)/2
最后满流才有欧拉回路
这样做的正确性:
双向边是随意定向的,因此这个定向可能是错的,才会导致一些点出度和入度不相等(如果欧拉回路本来存在的话)。如果把一条原本是v->u的边定成了u->v,那么u就多了出度,v就少了入度。要修正这个错误,就需要让u->v边反向,达到u出度-1,v入度+1的目的。也就是S->u->v->T这条流量的含义。当然反过来建也是可以的:S->v->u->T
如果最后不能满流,说明有一些点的入度没办法等于出度,那肯定不存在欧拉回路
AC代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=4e3+,mod=1e9+,inf=0x3f3f3f3f;
typedef long long ll;
struct edge
{
int from,to,c,f;
edge(int u,int v,int c,int f):from(u),to(v),c(c),f(f) {}
};
int n,m;
vector<edge> edges;
vector<int> g[maxn];
int d[maxn];//从起点到i的距离
int cur[maxn];//当前弧下标
struct bian
{
int a,b,c,d;
}qiao[maxn];
int in[maxn],out[maxn];
void init()
{
for(int i=; i<=n+; i++) g[i].clear(); //要把源点汇点算进去!!
edges.clear();
}
void addedge(int from,int to,int c) //加边 支持重边
{
edges.push_back(edge(from,to,c,));
edges.push_back(edge(to,from,,));
int siz=edges.size();
g[from].push_back(siz-);
g[to].push_back(siz-);
}
int bfs(int s,int t) //构造一次层次图
{
memset(d,-,sizeof(d));
queue<int> q;
q.push(s);
d[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=;i<g[x].size();i++)
{
edge &e=edges[g[x][i]];
if(d[e.to]<&&e.f<e.c) //d[e.to]=-1表示没访问过
{
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return d[t];
}
int dfs(int x,int a,int t) // a表示x点能接收的量
{
if(x==t||a==)return a;
int flow=,f;//flow总的增量 f一条增广路的增量
for(int &i=cur[x];i<g[x].size();i++)//cur[i] &引用修改其值 从上次考虑的弧
{
edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=dfs(e.to,min(a,e.c-e.f),t))>) //按照层次图增广 满足容量限制
{
e.f+=f;
edges[g[x][i]^].f-=f; //修改流量
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int maxflow(int s,int t)
{
int flow=;
while(bfs(s,t)!=-) //等于-1代表构造层次图失败 结束
{
memset(cur,,sizeof(cur));
flow+=dfs(s,inf,t);
}
return flow;
}
int check(int mid)
{
memset(in,,sizeof(in));
memset(out,,sizeof(out));
init();
for(int i=;i<m;i++)
{
if(qiao[i].c<=mid&&qiao[i].d<=mid)
{
addedge(qiao[i].a,qiao[i].b,);
in[qiao[i].b]++,out[qiao[i].a]++;
}
else if(qiao[i].c<=mid)
in[qiao[i].b]++,out[qiao[i].a]++;
else if(qiao[i].d<=mid)
in[qiao[i].a]++,out[qiao[i].b]++;
else
return ;
}
int sum=;
for(int i=;i<=n;i++)
{
int temp=out[i]-in[i];
if(temp&)
return ;
if(temp>)
addedge(n+,i,temp/),sum+=temp/;
if(temp<)
addedge(i,n+,-temp/);
}
return sum==maxflow(n+,n+);
}
int main()
{
scanf("%d%d",&n,&m);
int u,v,c,f;
for(int i=;i<m;i++)
{
scanf("%d%d%d%d",&u,&v,&c,&f);
qiao[i]={u,v,c,f};
}
int l=,r=,ans=-;
while(l<=r)
{
int mid=(l+r)/;
if(check(mid))
{
ans=mid;
r=mid-;
}
else
l=mid+;
}
if(ans==-)
printf("NIE\n");
else
printf("%d\n",ans);
}
[Poi2010]Bridges 最大流+二分答案 判定混合图欧拉回路的更多相关文章
- POJ1637 Sightseeing tour(判定混合图欧拉回路)
有向连通图存在欧拉回路的充要条件是所有点入度=出度. 首先随便给定所有无向边一个方向(不妨直接是u->v方向),记录所有点的度(记:度=入度-出度). 这时如果有点的度不等于0,那么就不存在欧拉 ...
- bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]
2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...
- BZOJ2095 POI2010 Bridges 【二分+混合图欧拉回路】
BZOJ2095 POI2010 Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛 ...
- 【BZOJ-2095】Bridge 最大流 + 混合图欧拉回路 + 二分
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 604 Solved: 218[Submit][Stat ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...
- POJ 1637 Sightseeing tour ★混合图欧拉回路
[题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...
- POJ 1637 混合图欧拉回路
先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...
- poj1637Sightseeing tour(混合图欧拉回路)
题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...
随机推荐
- 【Python】使用cmd模块构造一个带有后台线程的交互命令行界面
最近写一些测试工具,实在懒得搞GUI,然后意识到python有一个自带模块叫cmd,用了用发现简直是救星. 1. 基本用法 cmd模块很容易学到,基本的用法比较简单,继承模块下的Cmd类,添加需要的功 ...
- CPP-基础:关于多态
类的多态特性是支持面向对象的语言最主要的特性,有过非面向对象语言开发经历的人,通常对这一章节的内容会觉得不习惯,因为很多人错误的认为,支持类的封装的语言就是支持面向对象的,其实不然,Visua ...
- XAMPP虚拟主机配置--20150423
你需要一些顶级域名访问方式来访问你本地的项目文件而不是目录方式访问,这时候就需要配置虚拟主机,给你的目录绑定一个域名(本地的话可以通过修改 hosts 文件随便绑定什么域名比如 www.a.com 或 ...
- restful规范和drf模块
restfu1规范 它是一个规范,面向资源架构 10条规范: 1.api与用户的通信协议,总是使用https协议 api网上提供的接口 2.域名: 尽量将api部署在专用域名(会存在跨域问题) API ...
- (转)ios应用导航模型
Eko - MoboCentre 本文将介绍iPhone的导航风格,同时,也一并了解能够组织好应用内容和工具的导航方式.对于一个应用来说,最基础的操作就是基于页面间简单的移动,每张页面都完成一个任务或 ...
- shell中的$(( )) 的用途:主要用在整数的运算$(( a+b*c ))
$ a=5; b=7; c=2 $ echo $(( a+b*c ))//注意在进行这些运算时必须是双括号 $ echo $(( (a+b)/c )) $ echo $(( (a*b)%c))
- LeetCode(150) Evaluate Reverse Polish Notation
题目 Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are +, ...
- POJ:3461-Oulipo(KMP模板题)
原题传送:http://poj.org/problem?id=3461 Oulipo Time Limit: 1000MS Memory Limit: 65536K Description The F ...
- Java中HashMap底层原理源码分析
在介绍HashMap的同时,我会把它和HashTable以及ConcurrentHashMap的区别也说一下,不过本文主要是介绍HashMap,其实它们的原理差不多,都是数组加链表的形式存储数据,另外 ...
- Java设计模式学习三-----工厂模式
工厂模式 工厂模式(Factory Pattern)是Java中最常用的设计模式之一.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式. 在工厂模式中,创建对象时不会对客户端暴露创建逻 ...