洛谷—— P2515 [HAOI2010]软件安装
题目描述
现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。
但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。
我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。
输入输出格式
输入格式:
第1行:N, M (0<=N<=100, 0<=M<=500)
第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )
第3行:V1, V2, ..., Vi, ..., Vn (0<=Vi<=1000 )
第4行:D1, D2, ..., Di, ..., Dn (0<=Di<=N, Di≠i )
输出格式:
一个整数,代表最大价值
输入输出样例
3 10 5 5 6 2 3 4 0 1 1
5
拿到这个题,我们先要对其进行tarjan缩点。为什么要tarjan缩点??因为如果图中出现了一个环这说明这些软件必须一起将这些软件一块放入,这样我们可以将这样的一个环直接看成一个软件,这个软件的价值与体积即为环内点的总价值、体积。这样的话我们直接对原图进行tarjan缩点然后再在新图上乱搞就好了、、、
我们可以发现我们缩完点后的新图是不是可能由若干个树组成,这样处理起来无疑是很麻烦的。因此我们要将这个图给连起来(怎么连??我们建一个原点,然后向缩完点后的每一棵树的树根连边),形成一棵树,然后我们在这棵树上跑树形dp就可以啦。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 1100
using namespace std;
bool vis[N],vist[N];
int n,m,y,tim,top,tot,tat,sum,ans;
int v[N],w[N],zv[N],zw[N],stack[N],low[N];
int dad[N],dfn[N],head[N],head1[N],belong[N],f[N][N];
struct Edge
{
int to,from,next;
}edge[N],edge1[N];
int add(int x,int y)
{
tot++;
edge[tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
}
int add1(int x,int y)
{
tat++;
edge1[tat].to=y;
edge1[tat].next=head1[x];
head1[x]=tat;
}
int read()
{
,f=; char ch=getchar();
; ch=getchar();}
+ch-'; ch=getchar();}
return x*f;
}
int tarjan(int now)
{
dfn[now]=low[now]=++tim;
vis[now]=true,stack[++top]=now;
for(int i=head[now];i;i=edge[i].next)
{
int t=edge[i].to;
if(vis[t]) low[now]=min(low[now],dfn[t]);
else if(!dfn[t]) tarjan(t),low[now]=min(low[now],low[t]);
}
if(dfn[now]==low[now])
{
sum++;belong[now]=sum;
zw[sum]+=w[now],zv[sum]+=v[now];
for(;stack[top]!=now;top--)
{
int x=stack[top];
belong[x]=sum,vis[x]=false;
zw[sum]+=w[x],zv[sum]+=v[x];
}
vis[now]=false; top--;
}
}
int shink_point()
{
;i<=n;i++)
for(int j=head[i];j;j=edge[j].next)
if(belong[i]!=belong[edge[j].to])
{
dad[belong[edge[j].to]]=belong[i];
add1(belong[i],belong[edge[j].to]);
}
}
int dfs(int x)
{
for(int i=head1[x];i;i=edge1[i].next)
{
int t=edge1[i].to;
dfs(t);
;j--)
;k<=j;k++)
f[x][j]=max(f[x][j],f[x][k]+f[t][j-k]);
}
;i--)
if(i>=zv[x]) f[x][i]=f[x][i-zv[x]]+zw[x];
;
}
int main()
{
n=read(),m=read();
;i<=n;i++) v[i]=read();
;i<=n;i++) w[i]=read();
;i<=n;i++)
{
y=read();
) continue;
add(y,i);
}
;i<=n;i++)
if(!dfn[i]) tarjan(i);
shink_point();
;i<=sum;i++)
,i);
dfs(sum+);
ans=f[sum+][m];
printf("%d",ans);
;
}
洛谷—— P2515 [HAOI2010]软件安装的更多相关文章
- 洛谷 P2515 [HAOI2010]软件安装 解题报告
P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...
- 洛谷 P2515 [HAOI2010]软件安装
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- 洛谷——P2515 [HAOI2010]软件安装
https://www.luogu.org/problem/show?pid=2515#sub 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中 ...
- 洛谷 P2515 [HAOI2010]软件安装(缩点+树形dp)
题面 luogu 题解 缩点+树形dp 依赖关系可以看作有向边 因为有环,先缩点 缩点后,有可能图不联通. 我们可以新建一个结点连接每个联通块. 然后就是树形dp了 Code #include< ...
- 洛谷P2515 [HAOI2010]软件安装(tarjan缩点+树形dp)
传送门 我们可以把每一个$d$看做它的父亲,这样这个东西就构成了一个树形结构 问题是他有可能形成环,所以我们还需要一遍tarjan缩点 缩完点后从0向所有入度为零的点连边 然后再跑一下树形dp就行了 ...
- luogu P2515 [HAOI2010]软件安装 |Tarjan+树上背包
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为MM计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但 ...
- [bzoj2427]P2515 [HAOI2010]软件安装(树上背包)
tarjan+树上背包 题目描述 现在我们的手头有 \(N\) 个软件,对于一个软件 \(i\),它要占用 \(W_i\) 的磁盘空间,它的价值为 \(V_i\).我们希望从中选择一些软件安装到一台磁 ...
- P2515 [HAOI2010]软件安装
树形背包 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...
- luogu P2515 [HAOI2010]软件安装
传送门 看到唯一的依赖关系,容易想到树型dp,即\(f_{i,j}\)表示选点\(i\)及子树内连通的点,代价为\(j\)的最大价值,然后就是选课那道题 但是要注意 1.题目中的依赖关系不一定是树,可 ...
随机推荐
- Jarvis OJ-Level4
借助DynELF实现无libc的漏洞利用小结 #!/usr/bin/env python # coding:utf-8 from pwn import * elf = ELF('level4') wr ...
- iOS开发--使用OpenSSL生成私钥和公钥的方法
最近要在新项目中使用支付宝钱包进行支付,所以要调研对接支付宝的接口,支付宝开放平台采用了RSA安全签名机制,开发者可以通过支付宝 公钥验证消息来源,同时可使用自己的私钥对信息进行加密,所以需要在本 ...
- 51nod 1135 原根 (数论)
题目链接 建议与上一篇欧拉函数介绍结合食用. 知识点:1.阶:a和模m互质,使a^d≡1(mod m)成立的最小正整数d称为a对模m的阶(指数) 例如: 2^2≡1(mod3),2对模3的阶为2; ...
- javascript 使用 load 和 unload 事件,解决浏览器打开和关闭时需要做的操作。
最近有一个业务,就是修改一个业务需要加上锁.也就是打开浏览器时,加锁.等用户操作完毕,关掉浏览器之后在把锁打开.一开始想问题很局限.只是想着,关闭浏览器解锁,刷新页面不做操作.然后就一直在找在调用un ...
- Mac单机模式安装启动Kafka
1.下载kafka,网址: https://www.apache.org/dyn/closer.cgi?path=/kafka/2.0.0/kafka_2.12-2.0.0.tgz 2.移动tar包到 ...
- 【http】http协议的队首阻塞
1 队首阻塞 就是需要排队,队首的事情没有处理完的时候,后面的人都要等着. 2 http1.0的队首阻塞 对于同一个tcp连接,所有的http1.0请求放入队列中,只有前一个请求的响应收到了,然后才能 ...
- LeetCode(90) Subsets II
题目 Given a collection of integers that might contain duplicates, nums, return all possible subsets. ...
- ORACLE 查询所有用户调度作业
--查询所有用户调度作业:select * from ALL_SCHEDULER_JOBS; --查询当前用户调度作业:select * from USER_SCHEDULER_JOBS; --查询当 ...
- STM32F407 窗口看门狗 个人笔记
窗口看门狗的喂狗时间范围 由框图知: 复位条件是:当且仅当 { 启动位启动 且 { T6为0 (计数器的值减小到0X03F即下限,还没喂狗,即喂狗太晚) 或 计数器的值高于上限时喂狗,即喂狗太早 } ...
- 面试准备——JVM相关
https://www.cnblogs.com/goody9807/p/6511480.html https://www.cnblogs.com/java1024/p/8594784.html htt ...