本题就是给出一组cities。然后以下会询问,两个cities之间的最短路径。

属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了。

由于本题反复查询次数也不多,故此假设保存全部最短路径,那么是得不偿失了。

所以还是反复使用Dijsktra吧。

有没有更加好的办法处理反复查询问题呢?还没想到。

本算法纯粹手工打造了,不使用stl。代码非常长非常长,光打一遍就会手软的,呵呵。

原题:

You are given a list of cities. Each direct connection between two cities has its transportation cost (an integer bigger than 0). The goal is to find the paths of minimum cost between pairs of cities. Assume that the cost of each path (which is the sum of costs
of all direct connections belongning to this path) is at most 200000. The name of a city is a string containing characters a,...,z and is at most 10 characters long.

Input

s [the number of tests <= 10]
n [the number of cities <= 10000]
NAME [city name]
p [the number of neighbours of city NAME]
nr cost [nr - index of a city connected to NAME (the index of the first city is 1)]
[cost - the transportation cost]
r [the number of paths to find <= 100]
NAME1 NAME2 [NAME1 - source, NAME2 - destination]
[empty line separating the tests]

Output

cost [the minimum transportation cost from city NAME1 to city NAME2 (one per line)]

Example

Input:
1
4
gdansk
2
2 1
3 3
bydgoszcz
3
1 1
3 1
4 4
torun
3
1 3
2 1
4 1
warszawa
2
2 4
3 1
2
gdansk warszawa
bydgoszcz warszawa Output:
3
2

#pragma once
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string>
#include <map>
using namespace std; class TheShortestPath15
{
struct Node
{
int des, weight;
Node *next;
Node(int d, int w) : des(d), weight(w), next(NULL) {}
}; struct AdjList
{
Node *head;
AdjList() : head(NULL) {}
}; struct Graph
{
int v;
AdjList *arr;
Graph(int v1) : v(v1)
{
arr = new AdjList[v];
}
~Graph()
{
for (int i = 0; i < v; i++)
{
Node *h = arr[i].head;
while (h)
{
Node *next = h->next;
delete h, h = NULL;
h = next;
}
}
delete arr, arr = NULL;
}
}; void addEdge(Graph *gra, int src, int des, int w)
{
Node *n = new Node(des, w);
n->next = gra->arr[src].head;
gra->arr[src].head = n;
/*
n = new Node(src, w);
n->next = gra->arr[des].head;
gra->arr[des].head = n;
*/
} struct HeapNode
{
int v, dist;
explicit HeapNode(int v1, int d) : v(v1), dist(d) {}
}; struct Heap
{
int size, cap;
int *pos;
HeapNode **arr;
Heap(int c) : cap(c), size(0)
{
pos = new int[c];
arr = new HeapNode*[c];
}
~Heap()
{
delete [] pos, pos = NULL;
for (int i = 0; i < size; i++)
{
if (arr[i]) delete arr[i], arr[i] = NULL;
}
delete [] arr;
}
}; void swapHeapNodes(HeapNode **a, HeapNode **b)
{
HeapNode *c = *a;
*a = *b;
*b = c;
} void heapify(Heap *heap, int node)
{
if (!heap) return ;
int minN = node;
int left = (node<<1) + 1;
int right = (node<<1) + 2; if (left < heap->size &&
heap->arr[left]->dist < heap->arr[minN]->dist) minN = left; if (right < heap->size &&
heap->arr[right]->dist < heap->arr[minN]->dist) minN = right; if (minN != node)
{
heap->pos[heap->arr[minN]->v] = node;
heap->pos[heap->arr[node]->v] = minN; swapHeapNodes(&heap->arr[minN], &heap->arr[node]); heapify(heap, minN);
}
} inline bool isEmpty(Heap *heap)
{
return heap->size == 0;
} HeapNode *extraMin(Heap *heap)
{
if (isEmpty(heap)) return NULL; HeapNode *root = heap->arr[0];
HeapNode *last = heap->arr[heap->size-1];
heap->arr[0] = last;//别漏了这步。 heap->pos[root->v] = heap->size-1;
heap->pos[last->v] = 0; --heap->size; //别忘记先--
heapify(heap, 0); return root;
} void decreaseKey(Heap *heap, int v, int dist)
{
int i = heap->pos[v]; heap->arr[i]->dist = dist; while (i && heap->arr[i]->dist < heap->arr[(i-1)>>1]->dist)
{
heap->pos[heap->arr[i]->v] = (i-1)>>1;
heap->pos[heap->arr[(i-1)>>1]->v] = i; swapHeapNodes(&heap->arr[i], &heap->arr[(i-1)>>1]); i = (i-1)>>1;
}
} inline bool isInHeap(Heap *heap, int v)
{
return heap->pos[v] < heap->size;
} void dijsktra(Graph *gra, int src, int des, int dist[])
{
Heap *heap = new Heap(gra->v);
heap->size = gra->v; for (int i = 0; i < gra->v; i++)
{
dist[i] = INT_MAX;
heap->pos[i] = i;
heap->arr[i] = new HeapNode(i, dist[i]);
} dist[src] = 0;
decreaseKey(heap, src, 0); while (!isEmpty(heap))
{
HeapNode *hn = extraMin(heap);
int u = hn->v;
delete hn, hn = NULL; if (u == des) break; //这里添加代码。仅仅找到目标节点就可返回了
if (dist[u] == INT_MAX) break; Node *n = gra->arr[u].head;
while (n)
{
if (isInHeap(heap, n->des) &&
n->weight + dist[u] < dist[n->des])
{
dist[n->des] = n->weight + dist[u];
decreaseKey(heap, n->des, dist[n->des]);
}
n = n->next;
}
}
delete heap;
} public:
TheShortestPath15()
{
int s, n, p, nr, cost, r;
map<string, int> cities;
string name;
scanf("%d", &s);
while (s--)
{
scanf("%d", &n);
Graph *gra = new Graph(n);
for (int i = 0; i < n; i++)
{
//gets(NAME);教训:gets是取到\n或者EOF结束的,不是取单个单词
cin>>name;
cities[name] = i; scanf("%d", &p);
while (p--)
{
scanf("%d %d", &nr, &cost);
addEdge(gra, i, nr-1, cost);
}
}
scanf("%d", &r);
while (r--)
{
cin>>name;
int src = cities[name]; cin>>name;
int des = cities[name]; int *dist = (int *) malloc(sizeof(int) * n);
dijsktra(gra, src, des, dist);
printf("%d\n", dist[des]);
if (dist) free(dist);
}
delete gra;
}
}
};

SPOJ 15. The Shortest Path 最短路径题解的更多相关文章

  1. SPOJ 15. The Shortest Path 堆优化Dijsktra

    You are given a list of cities. Each direct connection between two cities has its transportation cos ...

  2. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  3. 最短路径遍历所有的节点 Shortest Path Visiting All Nodes

    2018-10-06 22:04:38 问题描述: 问题求解: 本题要求是求遍历所有节点的最短路径,由于本题中是没有要求一个节点只能访问一次的,也就是说可以访问一个节点多次,但是如果表征两次节点状态呢 ...

  4. ZOJ 2760 How Many Shortest Path(最短路径+最大流)

    Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...

  5. AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...

  6. AOJ GRL_1_B: Shortest Path - Single Source Shortest Path (Negative Edges) (Bellman-Frod算法求负圈和单源最短路径)

    题目链接: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_B   Single Source Shortest Path ...

  7. 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  8. [LeetCode] 847. Shortest Path Visiting All Nodes 访问所有结点的最短路径

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  9. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

随机推荐

  1. windows sdk 设置窗体透明

    #define WINVER 0x0501 #include <windows.h> /* Declare Windows procedure */ LRESULT CALLBACK Wi ...

  2. 关于nested exception is org.apache.ibatis.binding.BindingException:Parameter '***' not found报错解决

    几天晚上遇到的奇怪的问题  传入的参数名一直没有变   但是从mapper到xml似乎有一个找不到参数的报错,实际上只要在Mapper接口形参前加“@Param(“形参名称”)”就可以了

  3. buf.compare()

    buf.compare(otherBuffer) otherBuffer {Buffer} 返回:{Number} 比较两个 Buffer 实例,无论 buf 在排序上靠前.靠后甚至与 otherBu ...

  4. thinkphp5 框架修改的地方

    框架修改的地方 vendor/topthink/think-captcha/src/Captcha.php api验证码入库 196行 $img_code = strtoupper(implode(' ...

  5. python视频 神经网络 Tensorflow

    python视频 神经网络 Tensorflow 模块 视频教程 (带源码) 所属网站分类: 资源下载 > python视频教程 作者:smile 链接:http://www.pythonhei ...

  6. Anaconda换源及常用命令

    推荐一篇文章:http://www.cnblogs.com/IT-LearnHall/p/9486029.html 另外,记录几个自己遇到的问题 首先是换源.无论是安装包还是安装后更新python包, ...

  7. Matlab学习笔记(四)

    二.MATLAB基础知识 (六)字符串 字符串的创建和简单操作 用单引号对括起来的一系列字符的组合,每个字符是一个元素,通常通过两个字节来存储 表2-22    字符串常见操作函数(e_two_37. ...

  8. Apollo源码解析看一文就够

    对于配置中心我们先抛出问号三连,什么是配置中心?为什么要用配置中心?配置中心怎么用? 笔者说说自己理解的配置中心,个人观点的十六字 消息存储 消息推送 环境隔离 灰度发布 今天我们先来看Apollo配 ...

  9. python virtualenv 管理工具 - virtualenvwrapper

    我们使用python virtualenv构建不同的python环境,python3 也加入了virtualenv 模块. virtualenvwrapper 提供了更便捷的 virtualenv环境 ...

  10. hihoCode #1151 : 骨牌覆盖问题·二

    #1151 : 骨牌覆盖问题·二 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 上一周我们研究了2xN的骨牌问题,这一 ...