Kruskal算法(一)之 C语言详解
本章介绍克鲁斯卡尔算法。和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。
目录
1. 最小生成树
2. 克鲁斯卡尔算法介绍
3. 克鲁斯卡尔算法图解
4. 克鲁斯卡尔算法分析
5. 克鲁斯卡尔算法的代码说明
6. 克鲁斯卡尔算法的源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
最小生成树
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔算法介绍
克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。
克鲁斯卡尔算法图解
以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
克鲁斯卡尔算法分析
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。
关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。
克鲁斯卡尔算法的代码说明
有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。
1. 基本定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。
2. 克鲁斯卡尔算法
/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
void kruskal(Graph G)
{
int i,m,n,p1,p2;
int length;
int index = 0; // rets数组的索引
int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边
EData *edges; // 图对应的所有边
// 获取"图中所有的边"
edges = get_edges(G);
// 将边按照"权"的大小进行排序(从小到大)
sorted_edges(edges, G.edgnum);
for (i=0; i<G.edgnum; i++)
{
p1 = get_position(G, edges[i].start); // 获取第i条边的"起点"的序号
p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号
m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点
n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}
free(edges);
// 统计并打印"kruskal最小生成树"的信息
length = 0;
for (i = 0; i < index; i++)
length += rets[i].weight;
printf("Kruskal=%d: ", length);
for (i = 0; i < index; i++)
printf("(%c,%c) ", rets[i].start, rets[i].end);
printf("\n");
}
克鲁斯卡尔算法的源码
这里分别给出"邻接矩阵图"和"邻接表图"的克鲁斯卡尔算法源码。
Kruskal算法(一)之 C语言详解的更多相关文章
- Floyd算法(一)之 C语言详解
本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
- Prim算法(一)之 C语言详解
本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...
- 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)
一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...
- Kruskal算法 - C语言详解
最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的连通网可以有多棵权值总 ...
- 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)
2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...
- Java Web----EL(表达式语言)详解
Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...
- 二分算法题目训练(二)——Exams详解
CodeForces732D——Exams 详解 Exam 题目描述(google翻译) Vasiliy的考试期限将持续n天.他必须通过m门科目的考试.受试者编号为1至m. 大约每天我们都知道当天可以 ...
- 拓扑排序(一)之 C语言详解
本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...
随机推荐
- java学习笔记六——数组
数组类型 数组是一种常见的数据结构,可用于存放多个数据,每一个数组元素存放一个数据,通常可以通过下标进行访问其元素. Java数组要求所有数组元素具有相同的数据类型.因此,数组元素的数据类型是唯一的. ...
- RHEL6.5 删除桌面启动器(计算机/Home/回收站)
首先,安装gconf-editor以获得gconftool-2命令 终端命令: gconftool-2 --set /apps/nautilus/desktop/computer_icon_visib ...
- JS中innerHTML,innerText,value
一·.JS初学者易混淆的问题:innerHTML,innerText,value(他们和JQ的区别:JS→value,JQ→value()) 1.getElementById("a" ...
- MYSQL删除表的记录后如何使ID从1开始
MYSQL删除表的记录后如何使ID从1开始 MYSQL删除表的记录后如何使ID从1开始 http://hi.baidu.com/289766516/blog/item/a3f85500556e2c09 ...
- NYOJ 536 开心的mdd(DP)
开心的mdd 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 himdd有一天闲着无聊,随手拿了一本书,随手翻到一页,上面描述了一个神奇的问题,貌似是一个和矩阵有关的 ...
- linux延时关机
04.shutdown +2 "The machine will shutdown" # 2min 后关机,并通知在线者 05.shutdown -h now 立刻关机,其中now ...
- linq to entity 查询数据表是错误解决
错误提示: 解决方式:换成了 linq to sql方式
- [转]全面理解Unity加载和内存管理
[转]全面理解Unity加载和内存管理 最近一直在和这些内容纠缠,把心得和大家共享一下: Unity里有两种动态加载机制:一是Resources.Load,一是通过AssetBundle,其实两者本质 ...
- C++ REST SDK的基本用法
微软开发了一个开源跨平台的http库--C++ REST SDK(http://casablanca.codeplex.com/),又名卡萨布兰卡Casablanca,有个电影也叫这个名字,也许这个库 ...
- 作业八—Alpha阶段项目总结
一.项目的预期目标: 我们的图书管理系统之前的目标是做出可以让读者和管理员采用不同的搜索方式,并且时要做到读者和管理者两种不同的方式的!但是我们目前做到了部分搜索方式和管理员界面,主要原因是该项目如果 ...