Instead of distinguishingbetween code, integration and system testing, Google uses the language ofsmall, medium and large tests emphasizing scope over form. Small tests coversmall amounts of code and so on. Each of the three engineering roles mayexecute any of these types of tests and they may be performed as automated ormanual tests.

Small Tests are mostly (butnot always) automated and exercise the code within a single function or module.They are most likely written by a SWE or an SET and may require mocks and fakedenvironments to run but TEs often pick these tests up when they are trying todiagnose a particular failure. For small tests the focus is on typicalfunctional issues such as data corruption, error conditions and off by oneerrors. The question a small test attempts to answer is does this code do whatit is supposed to do?

Medium Tests can beautomated or manual and involve two or more features and specifically cover theinteraction between those features. I've heard any number of SETs describe thisas "testing a function and its nearest neighbors." SETs drive thedevelopment of these tests early in the product cycle as individual featuresare completed and SWEs are heavily involved in writing, debugging andmaintaining the actual tests. If a test fails or breaks, the developer takescare of it autonomously. Later in the development cycle TEs may perform mediumtests either manually (in the event the test is difficult or prohibitivelyexpensive to automate) or with automation. The question a medium test attemptsto answer is does a set of near neighbor functions interoperate with each otherthe way they are supposed to?

Large Tests cover three ormore (usually more) features and represent real user scenarios to the extentpossible. There is some concern with overall integration of the features butlarge tests tend to be more results driven, i.e., did the software do what theuser expects? All three roles are involved in writing large tests andeverything from automation to exploratory testing can be the vehicle toaccomplish accomplish it. The question a large test attempts to answer is doesthe product operate the way a user would expect?

The actual language ofsmall, medium and large isn’t important. Call them whatever you want. Theimportant thing is that Google testers share a common language to talk aboutwhat is getting tested and how those tests are scoped. When some enterprisingtesters began talking about a fourth class they dubbed enormous every othertester in the company could imagine a system-wide test covering nearly everyfeature and that ran for a very long time. No additional explanation wasnecessary.

The primary driver of whatgets tested and how much is a very dynamic process and varies wildly fromproduct to product. Google prefers to release often and leans toward getting aproduct out to users so we can get feedback and iterate. The general idea isthat if we have developed some product or a new feature of an existing productwe want to get it out to users as early as possible so they may benefit fromit. This requires that we involve users and external developers early in theprocess so we have a good handle on whether what we are delivering is hittingthe mark.

Finally, the mix betweenautomated and manual testing definitely favors the former for all three sizesof tests. If it can be automated and the problem doesn’t require humancleverness and intuition, then it should be automated. Only those problems, inany of the above categories, which specifically require human judgment, such asthe beauty of a user interface or whether exposing some piece of dataconstitutes a privacy concern, should remain in the realm of manual testing.

Having said that, it isimportant to note that Google performs a great deal of manual testing, bothscripted and exploratory, but even this testing is done under the watchful eyeof automation. Industry leading recording technology converts manual tests toautomated tests to be re-executed build after build to ensure minimalregressions and to keep manual testers always focusing on new issues. We alsoautomate the submission of bug reports and the routing of manual testing tasks.For example, if an automated test breaks, the system determines the last codechange that is the most likely culprit, sends email to its authors and files abug. The ongoing effort to automate to within the “last inch of the human mind”is currently the design spec for the next generation of test engineering toolsGoogle is building.

Those tools will behighlighted in future posts. However, my next target is going to revolve aroundThe Life of an SET. I hope you keep reading.
Instead of distinguishingbetween code, integration and system testing, Google uses the language ofsmall, medium and large tests emphasizing scope over form. Small tests coversmall amounts of code and so on. Each of the three engineering roles mayexecute any of these types of tests and they may be performed as automated ormanual tests.

Small Tests are mostly (butnot always) automated and exercise the code within a single function or module.They are most likely written by a SWE or an SET and may require mocks and fakedenvironments to run but TEs often pick these tests up when they are trying todiagnose a particular failure. For small tests the focus is on typicalfunctional issues such as data corruption, error conditions and off by oneerrors. The question a small test attempts to answer is does this code do whatit is supposed to do?

Medium Tests can beautomated or manual and involve two or more features and specifically cover theinteraction between those features. I've heard any number of SETs describe thisas "testing a function and its nearest neighbors." SETs drive thedevelopment of these tests early in the product cycle as individual featuresare completed and SWEs are heavily involved in writing, debugging andmaintaining the actual tests. If a test fails or breaks, the developer takescare of it autonomously. Later in the development cycle TEs may perform mediumtests either manually (in the event the test is difficult or prohibitivelyexpensive to automate) or with automation. The question a medium test attemptsto answer is does a set of near neighbor functions interoperate with each otherthe way they are supposed to?

Large Tests cover three ormore (usually more) features and represent real user scenarios to the extentpossible. There is some concern with overall integration of the features butlarge tests tend to be more results driven, i.e., did the software do what theuser expects? All three roles are involved in writing large tests andeverything from automation to exploratory testing can be the vehicle toaccomplish accomplish it. The question a large test attempts to answer is doesthe product operate the way a user would expect?

The actual language ofsmall, medium and large isn’t important. Call them whatever you want. Theimportant thing is that Google testers share a common language to talk aboutwhat is getting tested and how those tests are scoped. When some enterprisingtesters began talking about a fourth class they dubbed enormous every othertester in the company could imagine a system-wide test covering nearly everyfeature and that ran for a very long time. No additional explanation wasnecessary.

The primary driver of whatgets tested and how much is a very dynamic process and varies wildly fromproduct to product. Google prefers to release often and leans toward getting aproduct out to users so we can get feedback and iterate. The general idea isthat if we have developed some product or a new feature of an existing productwe want to get it out to users as early as possible so they may benefit fromit. This requires that we involve users and external developers early in theprocess so we have a good handle on whether what we are delivering is hittingthe mark.

Finally, the mix betweenautomated and manual testing definitely favors the former for all three sizesof tests. If it can be automated and the problem doesn’t require humancleverness and intuition, then it should be automated. Only those problems, inany of the above categories, which specifically require human judgment, such asthe beauty of a user interface or whether exposing some piece of dataconstitutes a privacy concern, should remain in the realm of manual testing.

Having said that, it isimportant to note that Google performs a great deal of manual testing, bothscripted and exploratory, but even this testing is done under the watchful eyeof automation. Industry leading recording technology converts manual tests toautomated tests to be re-executed build after build to ensure minimalregressions and to keep manual testers always focusing on new issues. We alsoautomate the submission of bug reports and the routing of manual testing tasks.For example, if an automated test breaks, the system determines the last codechange that is the most likely culprit, sends email to its authors and files abug. The ongoing effort to automate to within the “last inch of the human mind”is currently the design spec for the next generation of test engineering toolsGoogle is building.

Those tools will behighlighted in future posts. However, my next target is going to revolve aroundThe Life of an SET. I hope you keep reading.

How Google TestsSoftware - Part Five的更多相关文章

  1. How Google TestsSoftware - Crawl, walk, run.

    One of the key ways Google achievesgood results with fewer testers than many companies is that we ra ...

  2. How Google TestsSoftware - Part One

    This is the firstin a series of posts on this topic.The one question I get morethan any other is &qu ...

  3. How Google TestsSoftware - Part Three

    Lots of questions in thecomments to the last two posts. I am not ignoring them. Hopefully many of th ...

  4. How Google TestsSoftware - Part Two

    In order for the "you buildit, you break it" motto to be real, there are roles beyond the ...

  5. How Google TestsSoftware - The Life of a SET

    SETs are Software Engineersin Test. They are software engineers who happen to write testing function ...

  6. How Google TestsSoftware - A Break for Q&A

    New material for the thisseries is coming more slowly. I am beginning to get into areas where I want ...

  7. Google是如何做测试的?

    Google是如何做测试的?(一.二) 导读:本文译自 James Whittaker 在 Google 测试官方博客发表的文章<How Google TestsSoftware >. 在 ...

  8. Linux 利用Google Authenticator实现ssh登录双因素认证

    1.介绍 双因素认证:双因素身份认证就是通过你所知道再加上你所能拥有的这二个要素组合到一起才能发挥作用的身份认证系统.双因素认证是一种采用时间同步技术的系统,采用了基于时间.事件和密钥三变量而产生的一 ...

  9. linux上使用google身份验证器(简版)

    系统:centos6.6 下载google身份验证包google-authenticator-master(其实只是一个.zip文件,在windwos下解压,然后传进linux) #cd /data/ ...

随机推荐

  1. Mini projects #6 ---- Blackjack

    课程全名:An Introduction to Interactive Programming in Python,来自 Rice University 授课教授:Joe Warren, Scott ...

  2. 浅谈BFC

    Box 是 CSS 布局的对象和基本单位, 直观点来说,就是一个页面是由很多个 Box 组成的.元素的类型和 display属性,决定了这个 Box 的类型. 不同类型的 Box, 会参与不同的 Fo ...

  3. 创建GitHub技术博客全攻略

    http://blog.csdn.net/renfufei/article/details/37725057 http://www.pchou.info/web-build/2014/07/04/bu ...

  4. ubuntu10.04下修改mysql的datadir的问题

    ubuntu10.04下修改mysql的datadir的问题 转自:http://blog.sina.com.cn/s/blog_4152a9f50100mq5i.html 昨天由于服务器空间告紧,需 ...

  5. 创建webservice实例

    http://blog.csdn.net/haiyanstudent/article/details/32148207

  6. Android服务开机自启动

    新任务需要Android程序开机跑一个服务,查找资料得出如下方法: 用广播的方法监听系统启动事件:android.intent.action.BOOT_COMPLETED 并在AndroidManif ...

  7. C2第十次解题报告

    看过题解后如果觉得还算有用,请帮忙加点我所在团队博客访问量 http://www.cnblogs.com/newbe/ http://www.cnblogs.com/ne走迷宫wbe/p/406983 ...

  8. 用canvas制作酷炫射击游戏--part1

    好久没写博客了,因为过年后一直在学游戏制作方面的知识.学得差不多后又花了3个月时间做了个作品出来,现在正拿着这个作品找工作. 作品地址:https://betasu.github.io/Crimonl ...

  9. codeblocks配置GLUT

    codeblocks配置OPENGL GLUT 作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创代码根据G ...

  10. 解剖SQLSERVER 第六篇 对OrcaMDF的系统测试里避免regressions(译)

    解剖SQLSERVER 第六篇  对OrcaMDF的系统测试里避免regressions (译) http://improve.dk/avoiding-regressions-in-orcamdf-b ...