RCP:gef智能寻路算法(A star)
本路由继承自AbstactRouter,参数只有EditPart(编辑器内容控制器),gridLength(寻路用单元格大小),style(FLOYD,FLOYD_FLAT,FOUR_DIR)。
字符集编码为GBK,本文只做简单的代码解析,源码戳我
如果源码不全,可以联系本人。
算法实现主要有三:
1、Astar单向寻路
2、地图预读
3、弗洛伊德平滑算法
Astar寻路的实现:
ANode minFNode = null;
while (true) {
minFNode = findMinNode(openList);
openList.remove(minFNode);
closedList.add(minFNode);
if (minFNode == null || minFNode.equals(endNode))
break;
search(minFNode, openList, closedList, startNode, endNode);
} private void search(ANode node, List<ANode> openList,
List<ANode> closedList, ANode startNode, ANode endNode) {
ANode[] nodes = findAroundNode(node);
for (int i = 0, len = nodes.length; i < len; i++) {
if (nodes[i].getLevel() == ANodeLevel.DEAD)
continue;
nodes[i].g = (i > 3 ? nodes[i].getLevel().RE
: nodes[i].getLevel().BE) + node.g;
nodes[i].h = caculateH(nodes[i], endNode);
if (closedList.contains(nodes[i]))
continue;
if (!openList.contains(nodes[i])) {
openList.add(nodes[i]);
nodes[i].setParent(node);
} else if (openList.contains(nodes[i])) {
int idx = openList.indexOf(nodes[i]);
ANode n = openList.get(idx);
if (nodes[i].g < n.g) {
openList.remove(idx);
closedList.add(n);
nodes[i].setParent(n.getParent());
openList.add(idx, nodes[i]);
}
}
}
}
在网上大部分版本的Astar算法里,障碍只有两个参考值,即是可通过和不可通过
但在实际情况里,有可能会有较难度过的小溪,难以度过的河流,不能跨越的深涧,于是我在算法里引入了难易度概念,由ANodeLevel体现。
package galaxy.ide.configurable.editor.gef.router; /**
* 节点等级,RE直角边,BE斜角边
*
* @author caiyu
* @date 2014-5-15
*/
public enum ANodeLevel {
EASY(10, 14), NORMAL(20, 28), HARD(50, 68), DEAD(2000, 2800);
/**
* 直角边
*/
public final int RE;
/**
* 斜角边
*/
public final int BE; ANodeLevel(int RE, int BE) {
this.RE = RE;
this.BE = BE;
}
}
引入了四个难易程度,当然,这些难易程度自己可以调整。
障碍的难易程度是预读的,体现在代码:
private void preReadingNodes(Point startPoint) {
Rectangle r;
for (Object c : this.editPart.getChildren()) {
if (c instanceof GraphicalEditPart) {
r = ((GraphicalEditPart) c).getFigure().getBounds();
preReader.read(r, startPoint, D);
}
}
}
预读器preReader源码如下:
public void read(Rectangle r, Point startPoint, final int D) {
ANodeLevel level = ANodeLevel.HARD;
if (r.contains(this.startPoint) || r.contains(this.endPoint))
level = ANodeLevel.NORMAL;
int xS = ANodePreReader.calculateIndex(r.x, startPoint.x, D);
int xE = ANodePreReader
.calculateIndex(r.x + r.width(), startPoint.x, D);
int yS = ANodePreReader.calculateIndex(r.y, startPoint.y, D);
int yE = ANodePreReader.calculateIndex(r.y + r.height(), startPoint.y,
D);
Map<Integer, ANodeLevel> map;
for (int x = xS; x < xE; x++) {
for (int y = yS; y < yE; y++) {
map = pool.get(x);
if (map == null) {
map = new HashMap<Integer, ANodeLevel>();
pool.put(x, map);
}
map.put(y, level);
}
}
}
public ANode getNode(int x, int y) {
ANode node = new ANode(x, y);
Map<Integer, ANodeLevel> map = pool.get(x);
node.setLevel(map == null ? ANodeLevel.EASY
: map.get(y) == null ? ANodeLevel.EASY : map.get(y));
return node;
}
public static int calculateIndex(int v1, int v2, int distance) {
int offset = (v1 - v2) % distance;
return offset > 0 ? (v1 - v2) / distance + 1 : offset == 0 ? (v1 - v2)
/ distance : (v1 - v2) / distance - 1;
}
完成了以上,即可以实现智能绘图,应用该路由 new AStarConnectionRouter2(editPart, 20, AStarConnectionRouter.NONE);(不会在GEF中应用路由器的去看《GEF whole update》这本书)
如图所示:

可以看出,这个算法还有缺陷,并不平滑。我们加入弗洛伊德平滑算法new AStarConnectionRouter2(editPart, 20, AStarConnectionRouter.FLOYD);
,效果如图:

弗洛伊德平滑算法的原理:
1、如果A、B、C三点在同一直线上,视为三点共线,则去除B点
2、清理所有共线点之后,遍历任一点和其他点之间有无障碍物,如果没有,则去除两点之间的全部点。
算法实现:
/**
* 弗洛伊德平滑处理
*
* @param D
* @param startPoint
*
* @param points
*/
public void floyd(ANode node, Point startPoint, int D) {
if ((this.style & FLOYD_SIMPLIFY) != FLOYD_SIMPLIFY
&& (this.style & FLOYD) != FLOYD)
return;
ANode fatherNode, currentNode = node, grandNode;
// 去除共线
while (true) {
fatherNode = currentNode.getParent();
if (fatherNode == null)
break;
grandNode = fatherNode.getParent();
if (grandNode == null)
break;
if (fatherNode.xIndex - currentNode.xIndex == grandNode.xIndex
- fatherNode.xIndex
&& fatherNode.yIndex - currentNode.yIndex == grandNode.yIndex
- fatherNode.yIndex) {
currentNode.setParent(grandNode);
} else
currentNode = fatherNode;
}
currentNode = node; if ((this.style & FLOYD) != FLOYD)
return;
// 去除拐点
while (true) {
fatherNode = currentNode.getParent();
if (fatherNode == null)
break;
while (true) {
grandNode = fatherNode.getParent();
if (grandNode == null)
break;
if (linkable(currentNode, grandNode, startPoint, D)) {
currentNode.setParent(grandNode);
}
fatherNode = grandNode;
}
currentNode = currentNode.getParent();
if (currentNode == null)
break;
}
}
但是,上图的效果并不美观,有两个参考方案:
1、自己重写ConnectionFigure,使拐点圆滑
2、Astar算法只参考上下左右四个方向
只参考四个方向的使用例子new AStarConnectionRouter2(editPart, 20, AStarConnectionRouter.FLOYD| AStarConnectionRouter.FOUR_DIR);
如图所示:

以上,即实现了全部效果。
注意,在RouterStyle里有个TEST选项,该选项是测试使用,使用过程中会有大量bug。
new AStarConnectionRouter2(editPart, 20,
AStarConnectionRouter.FOUR_DIR
| AStarConnectionRouter.FLOYD_SIMPLIFY
| AStarConnectionRouter.TEST);
该测试用于展示在寻路过程中AStar算法遍历到的节点,如图所示:

下一次再实现一个圆滑的弧线拐角,再来和大家分享。
源码下载请移步:http://pan.baidu.com/s/1hqgNN2s
RCP:gef智能寻路算法(A star)的更多相关文章
- 算法:Astar寻路算法改进
早前写了一篇<RCP:gef智能寻路算法(A star)> 出现了一点问题. 在AStar算法中,默认寻路起点和终点都是N x N的方格,但如果用在路由上,就会出现问题. 如果,需要连线的 ...
- A*(也叫A star, A星)寻路算法Java版
寻路算法有非常多种,A*寻路算法被公觉得最好的寻路算法. 首先要理解什么是A*寻路算法,能够參考这三篇文章: http://www.gamedev.net/page/resources/_/techn ...
- 无递归 A星寻路算法
整理硬盘的时候,发现我早些年写的A星寻路算法.特放上来,待有缘人拿去,无递归噢,性能那是杠杠的. 码上伺候 public class Node { public int X { get; set; } ...
- 一种高效的寻路算法 - B*寻路算法
在此把这个算法称作B* 寻路算法(Branch Star 分支寻路算法,且与A*对应),本算法适用于游戏中怪物的自动寻路,其效率远远超过A*算法,经过测试,效率是普通A*算法的几十上百倍. 通过引入该 ...
- 数据结构和算法总结(三):A* 寻路算法
前言 复习下寻路相关的东西,而且A star寻路在游戏开发中应用挺多的,故记录下. 正文 迪杰斯特拉算法 说起A*得先谈谈Dijkstra算法,它是在BFS基础上的一种带权值的两点最短寻路贪心算法. ...
- 三角网格上的寻路算法Part.2—A*算法
背景 继上一篇三角网格Dijkstra寻路算法之后,本篇将继续介绍一种更加智能,更具效率的寻路算法-A*算法,本文将首先介绍该算法的思想原理,再通过对比来说明二者之间的相同与不同之处,然后采用类似Di ...
- A星寻路算法介绍
你是否在做一款游戏的时候想创造一些怪兽或者游戏主角,让它们移动到特定的位置,避开墙壁和障碍物呢? 如果是的话,请看这篇教程,我们会展示如何使用A星寻路算法来实现它! 在网上已经有很多篇关于A星寻路算法 ...
- A*寻路算法探究
A*寻路算法探究 A*算法常用在游戏的寻路,是一种静态网路中求解最短路径的搜索方法,也是解决很多搜索问题的算法.相对于Dijkstra,BFS这些算法在复杂的搜索更有效率.本文在U3D中进行代码的测试 ...
- A*寻路算法
对于初学者而言,A*寻路已经是个比较复杂的算法了,为了便于理解,本文降低了A*算法的难度,规定只能横竖(四方向)寻路,而无法直接走对角线,使得整个算法更好理解. 简而言之,A*寻路就是计算从起点经过该 ...
随机推荐
- 延迟对象$q和供应商配置config
1.angular总的$q和jquery中的延迟对象很类似,用法也差不多 m1.controller('meng',['$scope','$q',function($scope,$q){ var df ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- Java常用的7大排序算法汇总
1.插入排序算法 插入排序的基本思想是在遍历数组的过程中,假设在序号 i 之前的元素即 [0..i-1] 都已经排好序,本趟需要找到 i 对应的元素 x 的正确位置 k ,并且在寻找这个位置 k 的过 ...
- Linux系统调用
在前面,我们接触到了很多函数能够实现系统相关的功能,比如解析命令行参数.控制进程以及映射内存等等.实际上,这些函数能够分为两大类: 库函数--这些函数就像普通函数一样,参数放置在寄存器或者栈里,运行时 ...
- [PHP]OOP两类写法的性能对比
在PHP的OOP中我们有常见两种方法调用,对象调用和静态调用. 下面是一个简单的测试来比较它们的细微差异. /** * 对象初始化 -> 调用:objectCall.php * * 测试调用50 ...
- 默认构造方法并非总是public的
以前印象中一直有一个概念,说"如果没有提供构造方法,java将自动添加一个空的public的构造方法".现在看来,有2个问题,一,默认构造方法未必是public的,二,默认构造方法 ...
- NABCD
1) N (Need 需求) 随着科学技术的进步和计算机行业的迅速发展,人们的工作效率得到大大提高.计算机信息处理系统的引进已彻底改变了许多系统的经营管理. 图书管理系统是学校管理机制中的重要组成部分 ...
- centOS升级python3.5
CentOS自带的版本是2.7.5 目前在看廖老师的教学,他给的新版本是3以上了,果断升级到最新的Python版本 (windows下面多线程里面有点问题没解决,所以才换到linux下继续学习) 一 ...
- member template
1.当且仅当类模板的参数相同时,你才能对类实体对象相互赋值,即将一个实体对象整体赋值给另外一个实体对象.不能将一种类型的实体对象赋值给另外一种实体对象.如: Stack<int> intS ...
- express 转
目录 此文重点介绍Express3.0的开发框架,其中还会涉及到Mongoose,Ejs,Bootstrap等相关内容.Express已经升级到4.x,请同时参考文章,Node.js开发框架Expre ...