思路:看到(a + b)想到乘上(a - b)变成平方差展开(并没有想到2333), 两边同时乘上a - b, 最后式子转化成了a ^ 4 - ka = b ^ 4 - kb,剩下的就水到渠成了。

0的时候特判一下即可。

代码:

#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
#define pii pair<int, int>
#define db double
using namespace std;
const int maxn = 100010;
map<int, int> mp;
int mod, n;
int qpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1) {
if(y & 1) ans = ((LL)ans * x) % mod;
x = ((LL)x * x) % mod;
}
return ans;
}
map<int, int>::iterator it;
int main() {
int x, k;
LL ans = 0;
scanf("%d%d%d", &n, &mod, &k);
for (int i = 1; i <= n; i++) {
scanf("%d", &x);
x = (qpow(x, 4) - ((LL)k * x) % mod + mod) % mod;
mp[x]++;
}
for (it = mp.begin(); it != mp.end(); it++) {
LL tmp = it -> second;
ans += tmp * (tmp - 1) / 2;
}
if(mod == 0) {
LL tmp = mp[0];
ans += tmp * (tmp - 1) / 2;
}
printf("%lld\n", ans);
}

  

Codeforces 1188B 式子转化的更多相关文章

  1. Codeforces 1188B - Count Pairs(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 虽说是一个 D1B,但还是想了我足足 20min,所以还是写篇题解罢( 首先注意到这个式子里涉及两个参数,如果我们选择固定一个并动态维护另 ...

  2. Codeforces 1136E(转化+线段树维护)

    题目传送 虽然线段树比较显然但是发现a数组并不好维护.考虑将a转化为好维护的数组b. 方法 这里我将k[1]设为0,对应着\[a[1] + k[1] <= a[2]\]不难得出\[a[i] + ...

  3. Codeforces 1132E(转化+dp)

    要点 假设第i个最后总共选的值为ci,不妨把它分成两部分:\[c_i=cnt'_i*L+q_i\]\[L=840,\ 0<=q_i<L\]又可以写成:\[c_i=cnt_1*i+cnt_2 ...

  4. Codeforces 1142C(转化、凸包)

    可以变换坐标:x' = x, y' = y - x ^ 2,如此之后可得线性函数x' * b + c = y',可以发现两点连边为抛物线,而其他点都在这条线下方才满足题意,故而求一个上凸壳即可. #i ...

  5. Codeforces 1188B Count Pairs (同余+分离变量)

    题意: 给一个3e5的数组,求(i,j)对数,使得$(a_i+a_j)(a_i^2+a_j^2)\equiv k\ mod\ p$ 思路: 化简$(a_i^4-a_j^4)\equiv k(a_i-a ...

  6. CodeForces 366C 动态规划 转化背包思想

    这道题目昨晚比赛没做出来,昨晚隐约觉得就是个动态规划,但是没想到怎么DP,今天想了一下,突然有个点子,即局部最优子结构为 1-j,j<i,遍历i,每次从所有的1到j当中的最优解里面与当前商品进行 ...

  7. codeforces选做

    收录了最近本人完成的一部分codeforces习题,不定期更新 codeforces 1132E Knapsack 注意到如果只使用某一种物品,那么这八种物品可以达到的最小相同重量为\(840\) 故 ...

  8. 【Codeforces Round #431 (Div. 1) D.Shake It!】

    ·最小割和组合数放在了一起,产生了这道题目. 英文题,述大意:     一张初始化为仅有一个起点0,一个终点1和一条边的图.输入n,m表示n次操作(1<=n,m<=50),每次操作是任选一 ...

  9. Codeforces Round #580 (Div. 2)

    这次比上次多A了一道,但做得太慢,rating还是降了. Problem A Choose Two Numbers 题意:给出两个集合A,B,从A,B中分别选出元素a,b使得a+b既不属于集合A,又不 ...

随机推荐

  1. 给mysql一百万条数据的表添加索引

    直接alter table add index 添加索引,执行一个小时没反应,并且会导致锁表:故放弃该办法,最终解决办法如下: 一.打开mysql 命令行客户端 这里我们那可以看到导出的数据文件所存放 ...

  2. 洛谷4843 BZOJ2502 清理雪道

    有源汇有上下界的最小可行流. YY一下建图应该很好搞吧(? 就是对于每个雪道都是[1,inf]然后源点到所有点都是[0,inf]所有点到汇点都是[0,inf] 这样的话跑一个有源汇上下界最小可行流就可 ...

  3. Window平台下tree 命令使用

    WIndow 平台要想打印目录树,可以用cmd工具或者power shell 的tree命令实现 tree 命令格式和参数: TREE [drive:][path] [/F] [/A] /F 显示每个 ...

  4. 使用Fiddler为满足某些特定格式的网络请求返回mock响应

    假设我想对本地Java程序发起的调用SAP Hybris web service https://jerrywang.com:9002/rest/v2/electronics/users/ 这个网络请 ...

  5. solr测试用的配置

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  6. springboot实战(汪云飞)学习-1-1

    java EE开发的颠覆者 spring boot 实战 随书学习-1 1.学习案例都是maven项目,首先要在eclipse 中配置 maven,主要修改maven的配置文件:配置文件下载链接: h ...

  7. 深入理解js——非构造函数的继承

    原文来自阮一峰日志(http://www.ruanyifeng.com/blog/2010/05/object-oriented_javascript_inheritance_continued.ht ...

  8. 【PBFT】拜占庭容错

    共识机制堪称区块链的核心.我们知道,EOS.Hyperledger以及Stellar等著名的项目,都采用了BFT(拜占庭容错)共识机制,那么,BFT到底是什么鬼?和其它共识机制相比,又有什么优势和特点 ...

  9. LOJ 2557 「CTSC2018」组合数问题 (46分)

    题目:https://loj.ac/problem/2557 第一个点可以暴搜. 第三个点无依赖关系,k=3,可以 DP .dp[ cr ][ i ][ j ] 表示前 cr 个任务.第一台机器最晚完 ...

  10. [CSP-S模拟测试]:reverse(模拟)

    题目传送门(内部题56) 输入格式 第一行包含一个整数:$T$,表示数据组数.接下来$T$行,每行包含两个字符串:$a\ b$. 输出格式 对于每组数据,如果存在$c$,输出最长的情况下字典序最大的$ ...