[luogu]P1463

[SDOI2005]反素数ant

——!x^n+y^n=z^n

题目描述

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。

如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。

现在给定一个数N,你能求出不超过N的最大的反质数么?

输入输出格式

输入格式:

一个数N(1<=N<=2,000,000,000)。

输出格式:

不超过N的最大的反质数。

输入输出样例

输入样例1#:

1000

输出样例1#:

840


算术基本定理,质因数分解:

N=a1^k1*a2^k2*L*an^kn,约数个数:(k1+1)*(k2+1)*L*(kn+1)。

一开始以为贪心就行了,尽量多乘素数,后面发现...休想哦。40就过不了,唉,不过爆搜就可以过了呵呵...

记录当前的数st,当前搜到第几个素数(11个就很够了,再乘的话肯定存在前面某一种素数组合使其约数与当前相同,不过肯定是小的比较优啊),还有就是约数个数,约数相同的话要选择st小的,后面不叫反素数。

代码:

 //2017.10.30
 //dfs math
 #include<iostream>
 #include<cstdio>
 #include<cstring>
 using namespace std;
 typedef long long ll ;
 inline ll read();
 namespace lys{
     ]={,,,,,,,,,,,,,};
     ll ans=,n;
     int MAX;
     void dfs(ll st,int x,ll num){
         if(num>MAX||(num==MAX&&st<ans)){
             ans=st;
             MAX=num;
         }
         ;
         ll ;
         ) return ;
         while(base*st<=n){
             dfs(st*,1LL*(++i)*num);
             base*=pri[x];
         }
     }
     int main(){
         n=read();
         dfs(,,);
         printf("%lld\n",ans);
         ;
     }
 }
 int main(){
     lys::main();
     ;
 }
 inline ll read(){
     ll kk=,ff=;
     char c=getchar();
     '){
         ;
         c=getchar();
     }
     +c-',c=getchar();
     return kk*ff;
 }

[luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]的更多相关文章

  1. Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】

    题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...

  2. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  3. 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  4. P1463 [SDOI2005]反素数ant

    题意: 题解: 思维难度不高,考虑到n较大,而反质数个数较少 所以只要算出每个反质数即可 考虑如何计算,可以发现,我们只需枚举计算出约数有x个的最小数,再做一下判断即可 另外约数的个数=(a1+1)( ...

  5. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  6. [BZOJ1053][SDOI2005]反素数ant 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...

  7. [SDOI2005]反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  8. 洛谷 1463[SDOI2005] 反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  9. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

随机推荐

  1. jmeter之跨线程组共享cookies

    jmeter在一个线程组里,可以把登录接口放在上面,再添加一个cookies管理器元件,这样下一个接口就可以携带登录信息.在不同线程组里其实也可以共享cookies 目录 1.方法 2.应用 1.方法 ...

  2. Python工具库(感谢backlion整理)

    漏洞及渗透练习平台: WebGoat漏洞练习平台: https://github.com/WebGoat/WebGoat webgoat-legacy漏洞练习平台: https://github.co ...

  3. CSP2019 —— 今年欢笑复明年,不知退役在眼前

    关于2019CSP-J/-S的一些体会 又是一年退役季,想起在群里看到大佬的一句诗,感慨万千. 今年欢笑复明年,不知退役在眼前 于是便心生文意,随便写点东西来给自己康康. 先说说这次的成绩吧.大家应该 ...

  4. Java web 加载过程

    1.Web容器初始化过程 2.SpringMVC中web.xml配置 3.认识ServletContextListener 4.认识ContextLoaderListener 5.Dispatcher ...

  5. TFS版本对应

    原文: MSDN Operating systems TFS can be installed on a Windows server or client operating system. TFS ...

  6. Count Color poj2777 线段树

    Count Color poj2777 线段树 题意 有一个长木板,现在往上面在一定区间内刷颜色,后来刷的颜色会掩盖掉前面刷的颜色,问每次一定区间内可以看到多少种颜色. 解题思路 这里使用线段树,因为 ...

  7. 把int 类型转化为varchar并且去掉小数点同时以千分号‘,’分割

    把int 类型转化为money 类型,再转化为varchar,去掉小数点同时以千分号‘,’分割. select '$' + left(Convert(VARCHAR, cast(10000 as mo ...

  8. TP中如何去掉index.php

    使用过TP的同学都知道,在URL始终会有index .php  我们如何才能够去掉呢? 1. 确认httpd.conf配置文件中加载了mod_rewrite.so模块 2. AllowOverride ...

  9. 获取Http请求IP的工具类

    public class IpAddressUtil { public static String getIpAddr(HttpServletRequest request){ String ipAd ...

  10. 如何设置移动端的tab栏

    这是添加tab栏的代码: {                     "id": "tabBar1",                     "st ...