NOI数论姿势瞎总结(Pi也没有)
Miller-Rabin素数检测
费马小定理:没人不会吧。
二次探测:如果\(n\)是质数,\(x^2 \equiv 1\ (\mod n)\)的解只有\(x \equiv 1\)或\(x \equiv n-1\ (\mod n)\)。
实现方法:
选取一些质数。\(n\)不超过\(3 \times 10^{18}\)的时候只需要\(2 \sim 23\),\(n\)在unsigned long long范围内时只需要\(2 \sim 37\)。对于每个质数:
使用费马小定理的逆否定理检测。
此时,我们有\(p^{n-1} \equiv 1\ (\mod n)\),如果不出意外\(n\)是质数的话,根据二次探测定理,\(p^{\frac{n-1}{2}},p^{\frac{n-1}{4}}...\)在模意义下都应该为\(1\),直到一次取到\(n-1\)时规律消失。
所以我们可以倒序处理,根据第一次出现\(n-1\)的位置进行探测。
代码
int mi[9]={2,3,5,7,11,13,17,19,23};
inline LL qmul(LL x,LL y,LL mod){
LL z=(long double)x/mod*y+0.5;
return ((x*y-z*mod)%mod+mod)%mod;
}
inline LL qpow(LL x,LL y,LL mod){
LL ret=1,tt=x%mod;
while(y){
if(y&1)ret=qmul(ret,tt,mod);
tt=qmul(tt,tt,mod);
y>>=1;
}
return ret;
}
inline bool miller_rabin(LL x){
if(x==1)return false;
rin(i,0,8)if(x==mi[i])return true;
rin(i,0,8)if(x%mi[i]==0)return false;
LL a=x-1;int b=0;
while(!(a&1))a>>=1,++b;
rin(i,0,8){
if(qpow(mi[i],x-1,x)!=1)return false;
LL now=qpow(mi[i],a,x);
if(now==1||now==x-1)continue;
rin(j,1,b-1){
now=qmul(now,now,x);
if(now==x-1)break;
if(j==b-1)return false;
}
}
return true;
}
低于线性复杂度的积性函数的前缀和处理方法
看这篇:杜教筛&min_25筛复习
NOI数论姿势瞎总结(Pi也没有)的更多相关文章
- Codeforces Round #326 (Div. 2) B Duff in Love 简单数论 姿势涨
B. Duff in Love time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- 快速傅里叶变换与快速数论变换瞎学笔记$QwQ$
$umm$先预警下想入门$FFT$就不要康我滴学习笔记了,,, 就,我学习笔记基本上是我大概$get$之后通过写$blog$加强理解加深记忆这样儿的,有些姿势点我可能会直接$skip$什么的,所以对除 ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
- BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...
- 【NOI P模拟赛】华莱士CNHLS(容斥,数论分块)
题意 出题人吃华 莱 士拉肚子了,心情不好,于是出了一道题面简单的难题. 共 T T T 组数据,对正整数 n n n 求 F ( n ) = ∑ i = 1 n μ 2 ( i ) i F(n)=\ ...
- 【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理
这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可 那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)× ...
- UVA571Jugs题解--简单数论(其实是瞎搞)
题目链接 https://cn.vjudge.net/problem/UVA-571 分析 刚做了道倒水问题的题想看看能不能水二倍经验,结果发现了这道题 题意翻译:https://www.cnblog ...
- 7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演
神题! 一眼powerful number 复习了一下+推半天. 可以发现G函数只能为\(\sum_{d}[d|x]d\) 不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n ...
- NOI 2019 省选模拟赛 T1【JZOJ6082】 染色问题(color) (多项式,数论优化)
题面 一根长为 n 的无色纸条,每个位置依次编号为 1,2,3,-,n ,m 次操作,第 i 次操作把纸条的一段区间 [l,r] (l <= r , l,r ∈ {1,2,3,-,n})涂成颜色 ...
随机推荐
- Laravel5.5 实现session配置
\Illuminate\Session\Middleware\StartSession::class,\Illuminate\View\Middleware\ShareErrorsFromSessio ...
- python_线程读写操作<一>
线程读写操作 import threading,random,queue q = queue.Queue() alist=[] def shengchan(): for i in range(10): ...
- 快速幂(Fast_Power)
定义快速幂顾名思义,就是快速算某个数的多少次幂. 其时间复杂度为 O(log2N), 与朴素的O(N)相比效率有了极大的提高. 以下以求a的b次方来介绍 原理把b转换成2进制数 该2进制数第i位的权为 ...
- 附录1:arrayanalysis的本地使用(质量控制)
访问:https://github.com/BiGCAT-UM/affyQC_Module,点击“Download ZIP”,下载得到affyQC_Module-master.zip,解压得到一个af ...
- 将数据导出到 excel ,然后下载下来
private static final String SHEET_NAME = "培养计划表"; /** * @param response * @param trainingN ...
- arcgisJs之底图切换插件
arcgisJs之底图切换插件 底图切换插件在arcgis中有两种表现,如下: 1.两张底图切换 2.多张底图切换 一.两张地图切换 let basemapToggle = new BasemapTo ...
- Spring Cloud,Docker
Spring Cloud 先决条件 Spring cloud 基于spring boot,spring,java Spring Cloud解决的问题 分布式微服务架构和微服务监控.注册于发现.跟踪等一 ...
- fiddler抓包小技巧之自动保存抓包数据(可根据需求过滤)
首先 选择 如果有别的提示的话,你就按着提示走,就会安装一个编辑器,叫Fiddler Script. 正常情况下,你按着上面操作之后就会出现如下界面: 完事了之后,按下Ctrl+F来查找OnBefor ...
- 判断页面是在移动端还是PC端打开的
$(function () { var curWwwPath = window.document.location.href; var pathName = window.document.locat ...
- javascript 几个易错点记录
1.清空input标签值得时候,不能用html("")清空,要用val("")清空 2.事件如果绑定多次,触发事件后,回调函数也会执行多次,所有最好把绑定事件的 ...