在所有依靠Gradient Descent和Backpropagation算法来学习的Neural Network中,普遍都会存在Gradient Vanishing Problem。Backpropagation的运作过程是,根据Cost Function进行反向传播,利用Chain Rule去计算n层之前某一weight上的梯度,从而更新该weight。而事实上,在网络层次较深的情况下,我们获得的weight梯度,随着反向传播层次的深入,会呈现越来越小的状态。从而,在靠近输出端的Layers中,weight可以被很好的更新,因为可以获得不错的gradient,而在靠近输入端的Layers中,weight则更新缓慢。

举个最简单的例子,来说明该问题。如下的神经网络有四层,每层有一个node:

我们可知w是weight,b是bias,每一层的节点输入是z,输出是a,activation function是a=σ(z),我们可以得出:

当我们已知Cost Function时,我们利用Backpropagation计算weight:

可以看到,第一层的weight梯度,依赖于之后各层activation function的一阶导数之积。而对于Machine Learning中常用的Sigmoid及tanh激励函数,其derivative图像如下:

Sigmoid的derivative是[0,0.25]的,而tanh的derivative是[0,1]的。通过上式,我们看出,通过Backpropagation求梯度时,每往回传播一层,就要多乘以一项δ‘(z),也就是说,随着向回传递的深入,梯度会呈指数级的衰减,直至缩减到0,导致前层的权重无法更新。tanh要略好于sigmoid,但依然难以解决Gradient Vanishing的问题。所以Relu Function应运而生,并且在Deep Learning方面取得了巨大成功。Relu的表达式及图形如下:

其当x>0时,derivative是1,小于0时,derivative为0。该函数很好的解决了Gradient Vanishing Problem,在大多数情况下,我们构建Deep Learning时可以使用Relu作为默认的Activation Function。

Gradient Vanishing Problem in Deep Learning的更多相关文章

  1. (转)WHY DEEP LEARNING IS SUDDENLY CHANGING YOUR LIFE

    Main Menu Fortune.com       E-mail Tweet Facebook Linkedin Share icons By Roger Parloff Illustration ...

  2. Growing Pains for Deep Learning

    Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...

  3. Deep Learning Libraries by Language

    Deep Learning Libraries by Language Tweet         Python Theano is a python library for defining and ...

  4. Deep learning with Python

    一.导论 1.1 人工智能.机器学习.深度学习 人工智能.机器学习 人工智能:1980年代达到高峰的是专家系统,符号AI是之前的,但不能解决模糊.复杂的问题. 机器学习是把数据.答案做输入,规则作输出 ...

  5. This instability is a fundamental problem for gradient-based learning in deep neural networks. vanishing exploding gradient problem

    The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient pro ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  7. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  8. Deep Learning专栏--强化学习之从 Policy Gradient 到 A3C(3)

    在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们 ...

  9. Deep Learning in a Nutshell: History and Training

    Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...

随机推荐

  1. ex3 多分类和神经网络

    介绍 在本练习中,您将实现一对多逻辑回归和神经识别手写数字的网络.在开始编程之前练习,我们强烈建议观看视频讲座并完成相关主题的复习问题.要开始练习,您需要下载起始代码并将其内容解压缩到要完成练习的目录 ...

  2. Python笔记(读取txt文件中的数据)

    在机器学习中,常常需要读取txt文本中的数据,这里主要整理了两种读取数据的方式 数据内容 共有四列数据,前三列为特征值,最后一列为数据标签 40920 8.326976 0.953952 3 1448 ...

  3. ASP.NET Core 2.2 : 二十六. 应用JWT进行用户认证及Token的刷新

    来源:https://www.cnblogs.com/FlyLolo/p/ASPNETCore2_26.html 本文将通过实际的例子来演示如何在ASP.NET Core中应用JWT进行用户认证以及T ...

  4. MYSQL学习笔记——常用语句

    1.检索数据 1.1.检索单个列:SELECT prod_name FROM products; 1.2.检索多个列:SELECT prod_id, prod_name, prod_price FRO ...

  5. 【LeetCode】动态规划(下篇共39题)

    [600] Non-negative Integers without Consecutive Ones [629] K Inverse Pairs Array [638] Shopping Offe ...

  6. spring boot generator

    pom.xml 插件引用依赖 <build> <plugins> <plugin> <groupId>org.springframework.boot& ...

  7. gcc的-D,-w,-W,-Wall,-O3这些参数的意义

    一.-D 其意义是添加宏定义,这个很有用. 当你想要通过宏控制你的程序,不必傻乎乎的在程序里定义,然后需要哪个版本,去修改宏. 只需要在执行gcc的时候,指定-D,后面跟宏的名称即可. 示例: gcc ...

  8. Graph Convolutional Network

    How to do Deep Learning on Graphs with Graph Convolutional Networks https://towardsdatascience.com/h ...

  9. iOS----实现scrollView或者scrollView的子类下拉图片放大的效果

    代码是通过Tableview来说明的,用在其他情况下同样适用 - (void)viewDidLoad { [super viewDidLoad]; _imageview = [[UIImageView ...

  10. OC + RAC (九) 过滤

    // 跳跃 : 如下,skip传入2 跳过前面两个值 // 实际用处: 在实际开发中比如 后台返回的数据前面几个没用,我们想跳跃过去,便可以用skip - (void)skip { RACSubjec ...