#创建ndarray
import numpy as np
nd = np.array([2,4,6,''])#numpy中默认ndarray的所有元素的数据类型是相同,如果数据的类型不同,会统一为统一类型,优先级为str>float>int
nd # array(['2', '4', '6', '11'], dtype='<U11') # 使用np创建routines函数创建
# (1)np.one(shape,dtype=None,order='C')创建数组
# 根据所给的形状和类型返回一个元素全部为1的数组。默认numpy.float64类型
# 参数:
# shape:定义返回元祖的形状,传入int或者ints元祖,如果传入int,返一维数组
# 如果传入ints元祖,返回多维数组
# dtype:定义的数据类型,可选参数,默认numpy.float64.例如:numpy.int8
# order:可选,返回多维数组时,内存的排列方式
np.ones(shape=(5,4)) # 返回一个5行4列的数组,元素的内容都为1
ones = np.ones(shape=(3,2,3), dtype=int) # 返回3个两行三列都为1的数组 # (2)np.zeros(shape,dtype=float,order='c')
# 返回根据给定的形状和类型全部为0的数组
np.zeros(shape=(5,4)) # 返回一个5行4列都为0的数组 # (3)np.full(shape,fill_value,dtype=None,order='c')
# 根据给定的形状和所填充的值,返回一个新的数组
np.full(shape=(6,5,2), 1) # shape可以理解为6个5行2列的数组,并且都是使用1填充。 # (4)np.eye(N,M=None,k=0,dtype=float)
# 返回一个对角线为1,其他位置为0的数组(可以理解为单位矩阵)
# 参数:
# N:返回数组的行数
# M:可选,返回的数组的列表。如果不指定,返回的数组行=列
# k:可选,指定对角线的位置
# dtype:可选,返回数组的数据类型
np.eye(3,3) # 3行3列的数组,主对角线为1, 其余为0 # (5)np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
# 在指定的范围内返回均匀间隔的数字, 返回均匀分布的样本
# 参数:
# start: 序列的起始点
# end: 序列的结束点
# num: 生成的样本数, 默认是50个。
np.linspace(1,10) # 50个元素的数组
np.linspace(1,10,10) # array([ 1.,2.,3., 4.,5.,6.,7.,8.,9.,10.]) -- 1-10分成10份 # (6)np.arange([start,]stop,[step,]dtype=None)
# 类似python原生的range()方法,只不过返回的是array。
np.arange(0,100,step=2) # 创建由偶数组成的数组 # (7)np.random.randint(low,high=None, size=None, dtype="l")
# 生成在区间[low,high)上的随机整数值;若high=None, 则取值区间变为[0,low), size为最大长度, 为整形和整形元组。
np.random.randint(10,20) # 生成一个10-19之间的随机值
np.random.randint(10,20,size=10) # 返回一个数组,包含10个随机整数
np.random.randint(10,20,size=(2,3,4)) # 生成两个3行4列的随机值数组 # (8)np.randn(d0,d1,...dn)
# 标准的正太分布,参数为维度
np.random.randn(10,5) # 如果只给第一个参数为一维,给第二个参数为二维,... # (9)np.random.normal(loc=0.0, scale=1.0, size=None)
# 正太分布函数
# 参数:
# loc : 浮点型, 概率分布的均值, 对应着整体分布的中心center
# scale :浮点型, 概率分布的标准差
# size : 整形或整形数组, 默认为None, 只返回一个值
np.random.normal(175, scale=0, size=100) # 概率分布的标准差为0, 返回100个元素的数组, 元素都为175
np.random.normal(175, scale=100, size=100) # 100个正太分布元素 # (10)np.random.random(size=None)
# 生成0到1的随机数。
np.random.random(size=(5,4)) # 5行4列

好好学习,天天向上

Python中numpy的应用的更多相关文章

  1. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

  2. 基于Python中numpy数组的合并实例讲解

    基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...

  3. python中numpy矩阵运算操作大全(非常全)!

    python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...

  4. Python中Numpy及Matplotlib使用

    Python中Numpy及Matplotlib使用 1. Jupyter Notebooks 作为小白,我现在使用的python编辑器是Jupyter Notebook,非常的好用,推荐!!! 你可以 ...

  5. Python中NumPy基础使用

    Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包. ndarray ndarray(以下简称数组)是numpy的数 ...

  6. 【转】python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)

    二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...

  7. python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)

    二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...

  8. Python中Numpy mat的使用

    前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似.(mat与matrix等同) 基本操作 >>> m= np.mat([1,2,3]) #创 ...

  9. Python中Numpy模块的使用

    目录 NumPy ndarray对象 Numpy数据类型 Numpy数组属性 NumPy NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运 ...

随机推荐

  1. IO负载高来源定位pt-ioprofile

    1.使用top -d 1 查看%wa是否有等待IO完成的cpu时间,简单理解就是指cpu等待磁盘写入完成的时间:IO等待所占用的cpu时间的百分比,高过30%时IO压力高: 2.使用iostat -d ...

  2. soj#2402 「THUPC 2017」天天爱射击 / Shooting

    分析 按照被穿过多少次整体二分即可 代码 #include<bits/stdc++.h> using namespace std; #define lb(x) x&(-x) ],r ...

  3. Jmeter之查看结果树

    在编写接口测试脚本的时候,需要进行调试和查看结果是否正常的情况,这个时候可以使用查看结果树组件进行. 查看结果树中展示了每一个取样器的结果.请求信息和响应信息,可以查看这些内容去分析脚本是否存在问题. ...

  4. UnityEventSystem

    能够处理各种UI事件: IPointerEnterHandler:当指针进入 void OnPointerEnter(PointerEventData eventData); IPointerExit ...

  5. css随笔记(持续更新)

    /*DIV鼠标穿透*/ div{pointer-events:none;} /*清除IE11默认×*/ input::-ms-clear{display:none;} 使用伪类写边框部分三角 右上角三 ...

  6. 【MM系列】SAP MM模块-科目分配的配置

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-科目分配的配置   ...

  7. cocos2dx基础篇(14) 滚动视图CCScrollView

    [3.x]     (1)去掉 "CC"     (2)滚动方向         > CCScrollViewDirection 改为强枚举 ScrollView::Dire ...

  8. 初学node.js-nodejs中实现修改用户路由

    经过前面几次的学习,已经可以做下小功能,今天要实现的是修改用户路由. 一.users_model.js  功能:定义用户对象模型 var mongoose=require('mongoose'), S ...

  9. java基础/数据加解密(Mooc)

    一.消息摘要算法 常用摘要算法: 以下 (HEX)内容:bc指Bouncy Castle  |  cc指:Apache commons Codec 1.消息摘要算法MD5及MD族(MD2,MD4) 消 ...

  10. docker安装mysql(Baas)

    Docker安装mysql 5.7版本 //拉取mysql镜像 docker pull mysql:5.7 下载完成后,在本地镜像列表里查到REPOSITORY为mysql,标签为5.7的镜像. do ...