吴恩达深度学习:2.12向量化logistic回归
1.不使用任何for循环用梯度下降实现整个训练集的一步迭代。
(0)我们已经讨论过向量化如何显著加速代码,在这次视频中我们会设计向量化是如何实现logistic回归,这样酒桶同时处理m个训练集,来实现梯度下降算法的一步迭代,不需要使用任何显式的for循环
(1)logistic回归正向传播的步骤:如果有m个训练样本,对一个样本进行预测,需要通过下面的方式计算出z值和激活函数a值,然后用同样的方法计算第二个和第三个样本...........以此类推,如果有m个样本的话,这样可能需要做上m次。

可以看出,为了执行正向传播的步骤,针对m各样本都需要计算出预测的结果,但是有一个办法不需要任何一个显示的for循环,
(2)定义矩阵X来作为训练的输入,像下面这个由m列堆叠在一起形成了nx x m的矩阵。首先要做的是计算z(1)、z(2)、z(3)等等,全部都在一个步骤中,我们先构建一个1xm的矩阵,实际上就是一个行向量,我们先计算z(1),z(2)等等一直到z(m),都是在同一时间内完成的,结果发现可以写成w的转置乘以大写的矩阵X再加上向量b,如下所示:
,最后计算的结果如下:

在numpy中的计算形式是:
吴恩达深度学习:2.12向量化logistic回归的更多相关文章
- 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)
1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- Coursera 吴恩达 深度学习 学习笔记
神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...
- 吴恩达深度学习:2.3梯度下降Gradient Descent
1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输 ...
随机推荐
- JPA 开发写SQL时候遇见的困难点
官方文档 https://docs.spring.io/spring-data/jpa/docs/1.11.16.RELEASE/reference/html/#repositories.specia ...
- 四叉树的js实现
基于 https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collision ...
- gcc编译错误
使用boost的时候遇到一个链接错误 undefined reference to `boost::system::detail::generic_category_instance 出现这个问题的有 ...
- LoadRunner运行时异常处理
VuGen提供了错误处理函数lr_continue_on_error,用来在脚本中实时修改Vuser的出错设置.lr_continue_on_error函数语法结构如下: Loadrunner在运行过 ...
- VirtualBox上Centos7磁盘扩容
VirtualBox上Centos7磁盘扩容 非常实用 点击直达
- zookeeper源码分析:选举流程和请求处理
集群启动: QuorumPeerMain. runFromConfig() quorumPeer.start(); loadDataBase(); cnxnFactory.start(); ...
- 新增存储用Parted分区并建LVM卷
新增存储用Parted分区并建LVM卷 一,Parted分区 1,parted分区 www.ahlinux.com # parted /dev/sda GNU Parted 2.1 使用 /dev/ ...
- docker run 和 docker exec 的差异
docker run 和 docker exec 的差异 docker run :根据镜像创建一个容器并运行一个命令,操作的对象是 镜像: docker exec :在运行的容器中执行命令,操作的对象 ...
- Sublime Text 3 相关
Sublime Text 3 相关 Sublime Text 3是款非常实用代码编辑神器,但是想要用任何一款软件,掌握一些快捷键还是很有必要的.. 将Sublime Text 3 添加到右键选项中 打 ...
- mysqli实现增删改查(转)
1.面向对象 在面向对象的方式中,mysqli被封装成一个类,它的构造方法如下: __construct ([ string $host [, string $username [, string $ ...