The paper:

Hui Zou, Trevor Hastie, and Robert Tibshirani,

Sparse Principal Component Analysis,

Journal of computational and Graphical Statistics, 15(2): 265-286, 2006.

Reproduction of the Synthetic Example in Section 5.2 using R programming:

 library(elasticnet)

 ## sample version of SPCA
n =
v1 = rnorm(n,,sqrt())
v2 = rnorm(n,,sqrt())
v3 = -.*v1 + 0.925*v2 + rnorm(n)
x1 = v1 + rnorm(n)
x2 = v1 + rnorm(n)
x3 = v1 + rnorm(n)
x4 = v1 + rnorm(n) x5 = v2 + rnorm(n)
x6 = v2 + rnorm(n)
x7 = v2 + rnorm(n)
x8 = v2 + rnorm(n) x9 = v3 + rnorm(n)
x10 = v3 + rnorm(n) x = cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)
x.cov = t(x) %*% x/n; head(x.cov)
a = spca(x, , type='predictor', sparse='varnum', para=c(,), lambda=)
a
## population version of SPCA
g1 = matrix(, , )
diag(g1) = g2 = matrix(, , )
diag(g2) = g3 = matrix(283.7875, , )
diag(g3) = diag(g3)+ g1g3 = matrix(-, , )
g2g3 = matrix(277.5, , ) # construct the exact covariance matrix
x.cov = matrix(, , )
x.cov[:,:] = g1
x.cov[:,:] = g2
x.cov[:,:] = g3
x.cov[:,:] = g1g3
x.cov[:,:] = t(g1g3)
x.cov[:,:] = g2g3
x.cov[:,:] = t(g2g3) b = spca(x.cov, , type='Gram', sparse='varnum', para=c(,), lambda=)
b

The results of the population version using exact covariance matrix are exactly as in the paper:

> b

Call:
spca(x = x.cov, K = , para = c(, ), type = "Gram", sparse = "varnum",
lambda = ) sparse PCs
Pct. of exp. var. : 40.9 39.5
Num. of non-zero loadings :
Sparse loadings
PC1 PC2
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.0 0.5
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.5 0.0
[,] 0.0 0.0
[,] 0.0 0.0

But the sample version may randomly vary a little.

> a

Call:
spca(x = x, K = , para = c(, ), type = "predictor", sparse = "varnum",
lambda = ) sparse PCs
Pct. of exp. var. : 37.9 37.6
Num. of non-zero loadings :
Sparse loadings
PC1 PC2
x1 0.000 -0.303
x2 0.000 -0.533
x3 0.000 -0.576
x4 0.000 -0.540
x5 -0.492 0.000
x6 -0.287 0.000
x7 -0.481 0.000
x8 -0.666 0.000
x9 0.000 0.000
x10 0.000 0.000

Having fun learning sparse PCA!

Sparse PCA: reproduction of the synthetic example的更多相关文章

  1. Deflation Methods for Sparse PCA

    目录 背景 总括 Hotelling's deflation 公式 特点 Projection deflation 公式 特点 Schur complement deflation Orthogona ...

  2. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms[贪婪算法选特征]

    目录 概括 Sparse PCA Formulation 非常普遍的问题 Optimality Conditions Eigenvalue Bounds 算法 代码 概括 这篇论文,不像以往的那些论文 ...

  3. Sparse PCA 稀疏主成分分析

    Sparse PCA 稀疏主成分分析 2016-12-06 16:58:38 qilin2016 阅读数 15677 文章标签: 统计学习算法 更多 分类专栏: Machine Learning   ...

  4. A direct formulation for sparse PCA using semidefinite programming

    目录 背景 Sparse eigenvectors(单个向量的稀疏化) 初始问题(low-rank的思想?) 等价问题 最小化\(\lambda\) 得到下列问题(易推) 再来一个等价问题 条件放松( ...

  5. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  6. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  7. 深入学习主成分分析(PCA)算法原理(Python实现)

    一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...

  8. Sparse Principal Component Analysis

    目录 背景: 部分符号 创新点 文章梗概 The LASSO AND THE ELASTIC NET 将PCA改造为回归问题 定理二 单个向量(无需进行SVD版本) 定理三 多个向量(无需进行SVD, ...

  9. Full Regularization Path for Sparse Principal Component Analysis

    目录 背景 Notation Sparse PCA Semidefinite Relaxation Low Rank Optimization Sorting and Thresholding 背景 ...

随机推荐

  1. vue --》组件的封装 及 参数的传递

    vue组件的定义 ● 组件(Component)是Vue.js最强大的功能之一 ● 组件可以扩展HTML元素,封装可重用代码 ● 在较高层面上,组件是自定义元素,Vue.js的编译器为他添加特殊功能 ...

  2. xmake v2.1.5版本新特性介绍

    2.1.5版本现已进入收尾阶段,此版本加入了一大波新特性,目前正在进行稳定性测试和修复,在这里,先来介绍下新版本中引入了哪些新特性和改进. 1. 提供类似cmake的find_*系列接口,实现各种查找 ...

  3. MSF——客户端渗透之VBScript感染

    弱点扫描 根据信息收集的结果搜索漏洞利用模块 结合外部漏洞扫描系统对大IP地址段进行批量扫描 误报率.漏报率 VNC密码破解 客户端渗透 VBScript感染方式 利用  宏  感染word.exce ...

  4. windows 使用nginx

    windows 安装nginx 进入此地址进行下载 http://nginx.org/en/download.html 解压到相关目录 启动 start nginx 关闭 nginx -s stop ...

  5. VS2010中解决Qt“Unable to find a Qt build“

    转自:http://blog.sina.com.cn/s/blog_687960370101d0eu.html 三种方法: 1.在QT菜单下单击OPTION,然后单击ADD,选择QT安装路径. 2.运 ...

  6. 修改url,

    第一种场景: 无论url怎么变,表单里面的url始终不变 http://127.0.0.1:8000/CC/indexssssssssssssssssss/ url(r'^indexsssssssss ...

  7. java 中的引用类型

    GC基本原理 GC (Garbage Collection)的基本原理:将内存中不再被使用的对象进行回收,GC中用于回收的方法称为收集器,由于GC需要消耗一些资源和时间,Java在对对象的生命周期特征 ...

  8. MySQL第五天——日志

    日志 log_error(错误日志) 用于记录 MySQL 运行过程中的错误信息,如,无法加载 MySQL数据库的数据文件,或权限不正确等都会被记录在此. 默认情况下,错误日志是开启的,且无法禁止. ...

  9. openstack stein部署手册 4. glance

    # 建立数据库用户及权限 create database glance; grant all privileges on glance.* to glance@'localhost' identifi ...

  10. Java基础学习(3)

    Java基础学习(三) Java异常 Throwable类:所有异常的祖先类 Error:虚拟机异常.内存错误.没法处理 Exception:编码.环境.用户操作输入出现问题 非检查异常(自动捕获): ...