题目链接:HDU 1724

Problem Description

Math is important!! Many students failed in 2+2’s mathematical test, so let's AC this problem to mourn for our lost youth..

Look this sample picture:

A ellipses in the plane and center in point O. the L,R lines will be vertical through the X-axis. The problem is calculating the blue intersection area. But calculating the intersection area is dull, so I have turn to you, a talent of programmer. Your task is tell me the result of calculations.(defined PI=3.14159265 , The area of an ellipse A=PIab )

Input

Input may contain multiple test cases. The first line is a positive integer N, denoting the number of test cases below. One case One line. The line will consist of a pair of integers a and b, denoting the ellipse equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\), A pair of integers l and r, mean the L is (l, 0) and R is (r, 0). (-a <= l <= r <= a).

Output

For each case, output one line containing a float, the area of the intersection, accurate to three decimals after the decimal point.

Sample Input

2
2 1 -2 2
2 1 0 2

Sample Output

6.283
3.142

Source

HZIEE 2007 Programming Contest

Solution

题意

给定椭圆和两条直线,求上图阴影部分的面积。

思路

自适应辛普森积分

Simpson 积分是数值计算中用来近似求解积分值的一种方法。公式如下:

\[\int_a^bf(x)dx \approx \frac{b - a}{a}(f(a) + 4f(\frac{a + b}{2}) + f(b))
\]

普通的 Simpson 积分误差比较大,一般使用自适应 Simpson 积分。

代码中的自适应 Simpson 积分来自 Kuangbin 的模板。

Code

#include <bits/stdc++.h>
using namespace std;
typedef double db;
const db eps = 1e-8;
db a, b, l, r; db F(db x) {
return sqrt((1 - x * x / a / a) * b * b);
} db simpson(db a, db b) {
db c = a + (b - a) / 2;
return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6;
} db asr(db a, db b, db eps, db A) {
db c = a + (b - a) / 2;
db L = simpson(a, c), R = simpson(c, b);
if(fabs(L + R - A) <= 15 * eps) return L + R + (L + R - A) / 15.0;
return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
} db asr(db a, db b, db eps) {
return asr(a, b, eps, simpson(a, b));
} int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%lf%lf%lf%lf", &a, &b, &l, &r);
printf("%.3lf\n", 2.0 * asr(l, r, eps));
}
return 0;
}

HDU 1724 Ellipse (自适应辛普森积分)的更多相关文章

  1. hdu 1724 Ellipse —— 自适应辛普森积分

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1724 函数都给出来了,可以用辛普森积分: 一开始 eps = 1e-8 TLE了,答案只要三位小数,那么 ...

  2. HDU - 1724 Ellipse 自适应辛普森模板

    OJ 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #include ...

  3. HDU 1724 Ellipse 自适应simpson积分

    simpson公式是用于积分求解的比较简单的方法(有模板都简单…… 下面是simpson公式(很明显 这个公式的证明我并不会…… (盗图…… 因为一段函数基本不可能很规则 所以我们要用自适应积分的方法 ...

  4. hdu 1724 : Ellipse 【Simpson积分】

    题目链接 题意:给出椭圆方程中的a和b,再给出l.r,求l到r的积分的二倍. 输出时要求精度控制为保留到小数点后3位,如下代码中,eps设为1e-9 1e-8时均TLE,1e-4可以AC,1e-3会W ...

  5. HDU 1724:Ellipse(自适应辛普森积分)

    题目链接 题意 给出一个椭圆,问一个[l, r] 区间(蓝色区域)的面积是多少. 思路 自适应辛普森积分 具体一些分析如上. 很方便,套上公式就可以用了. 注意 eps 的取值影响了跑的时间,因为决定 ...

  6. hdu 1724 Ellipse simpson积分

    /* hdu 1724 Ellipse simpson积分 求椭圆的部分面积 simpson积分法 http://zh.wikipedia.org/zh-tw/%E8%BE%9B%E6%99%AE%E ...

  7. 【自适应辛普森积分】hdu1724 Ellipse

    Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. HDU 1724 Ellipse 【自适应Simpson积分】

    Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. HDU 1724 Ellipse

    Problem Description Math is important!! Many students failed in 2+2’s mathematical test, so let's AC ...

随机推荐

  1. VUE不能对新增属性监测更新

    data () { return { data:{}, } }, method:{ if(data.code==0){ this.loading = false; this.data = data.d ...

  2. 斯坦福【概率与统计】课程笔记(三):EDA | 直方图

    单个定量变量的直方图表示 大家知道,定量变量是连续型变量,即不会像分类变量那样有明显的分类,那么如何将其画成直方图呢?一般来说,会将其按照某个维度来将其分组(group),举个例子. 我们有15个学生 ...

  3. shell cp拷贝的用法

    个人觉得这个记录的比较全 自己查阅: cp [options] <source file or directory> <target file or directory> 或 ...

  4. selenium:Xpath定位详解

    xpath定位在业界被戏称为元素定位的"屠龙宝刀",宝刀在手,武林我有.现在我们就来详解xpath定位方法. 一.xpath通过元素属性定位 xpath可以通过元素的属性来定位,如 ...

  5. Vue是如何渲染页面的,渲染过程以及原理代码

    Vue是如何渲染页面的,渲染过程以及原理代码:https://www.cnblogs.com/ypinchina/p/7238402.html

  6. Python里面search()和match()的区别?

    match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配, 也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话, ...

  7. box2d——1.tiles瓦片积木

    [调试渲染]   将TestCpp里Box2DTestBed的GLES-Render.h/cpp加入到项目中.声明绘制变量:GLESDebugDrawmDebugDraw. [创建世界]   // 依 ...

  8. hdu 5435 A serious math problem

    A serious math problem Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...

  9. Java数组遍历

    1.数组声明格式: 数据类型 [] 数组名 = new 数据类型[长度]: 数组长度一旦确定无法更改. 数组里的数据必须是相同类型或自动向上转型后兼容的类型 2.数组遍历 //一维数组 String ...

  10. System.Net.Mail.SmtpException:不允许使用邮箱名称.

    使用SmtpClient发送邮件的时候,出现了如题错误. 解决方案: 将  SmtpClient.UseDefaultCredentials  属性设置为 true . 官方文档说明: Some SM ...