题目链接:HDU 1724

Problem Description

Math is important!! Many students failed in 2+2’s mathematical test, so let's AC this problem to mourn for our lost youth..

Look this sample picture:

A ellipses in the plane and center in point O. the L,R lines will be vertical through the X-axis. The problem is calculating the blue intersection area. But calculating the intersection area is dull, so I have turn to you, a talent of programmer. Your task is tell me the result of calculations.(defined PI=3.14159265 , The area of an ellipse A=PIab )

Input

Input may contain multiple test cases. The first line is a positive integer N, denoting the number of test cases below. One case One line. The line will consist of a pair of integers a and b, denoting the ellipse equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\), A pair of integers l and r, mean the L is (l, 0) and R is (r, 0). (-a <= l <= r <= a).

Output

For each case, output one line containing a float, the area of the intersection, accurate to three decimals after the decimal point.

Sample Input

2
2 1 -2 2
2 1 0 2

Sample Output

6.283
3.142

Source

HZIEE 2007 Programming Contest

Solution

题意

给定椭圆和两条直线,求上图阴影部分的面积。

思路

自适应辛普森积分

Simpson 积分是数值计算中用来近似求解积分值的一种方法。公式如下:

\[\int_a^bf(x)dx \approx \frac{b - a}{a}(f(a) + 4f(\frac{a + b}{2}) + f(b))
\]

普通的 Simpson 积分误差比较大,一般使用自适应 Simpson 积分。

代码中的自适应 Simpson 积分来自 Kuangbin 的模板。

Code

#include <bits/stdc++.h>
using namespace std;
typedef double db;
const db eps = 1e-8;
db a, b, l, r; db F(db x) {
return sqrt((1 - x * x / a / a) * b * b);
} db simpson(db a, db b) {
db c = a + (b - a) / 2;
return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6;
} db asr(db a, db b, db eps, db A) {
db c = a + (b - a) / 2;
db L = simpson(a, c), R = simpson(c, b);
if(fabs(L + R - A) <= 15 * eps) return L + R + (L + R - A) / 15.0;
return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
} db asr(db a, db b, db eps) {
return asr(a, b, eps, simpson(a, b));
} int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%lf%lf%lf%lf", &a, &b, &l, &r);
printf("%.3lf\n", 2.0 * asr(l, r, eps));
}
return 0;
}

HDU 1724 Ellipse (自适应辛普森积分)的更多相关文章

  1. hdu 1724 Ellipse —— 自适应辛普森积分

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1724 函数都给出来了,可以用辛普森积分: 一开始 eps = 1e-8 TLE了,答案只要三位小数,那么 ...

  2. HDU - 1724 Ellipse 自适应辛普森模板

    OJ 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #include ...

  3. HDU 1724 Ellipse 自适应simpson积分

    simpson公式是用于积分求解的比较简单的方法(有模板都简单…… 下面是simpson公式(很明显 这个公式的证明我并不会…… (盗图…… 因为一段函数基本不可能很规则 所以我们要用自适应积分的方法 ...

  4. hdu 1724 : Ellipse 【Simpson积分】

    题目链接 题意:给出椭圆方程中的a和b,再给出l.r,求l到r的积分的二倍. 输出时要求精度控制为保留到小数点后3位,如下代码中,eps设为1e-9 1e-8时均TLE,1e-4可以AC,1e-3会W ...

  5. HDU 1724:Ellipse(自适应辛普森积分)

    题目链接 题意 给出一个椭圆,问一个[l, r] 区间(蓝色区域)的面积是多少. 思路 自适应辛普森积分 具体一些分析如上. 很方便,套上公式就可以用了. 注意 eps 的取值影响了跑的时间,因为决定 ...

  6. hdu 1724 Ellipse simpson积分

    /* hdu 1724 Ellipse simpson积分 求椭圆的部分面积 simpson积分法 http://zh.wikipedia.org/zh-tw/%E8%BE%9B%E6%99%AE%E ...

  7. 【自适应辛普森积分】hdu1724 Ellipse

    Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. HDU 1724 Ellipse 【自适应Simpson积分】

    Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. HDU 1724 Ellipse

    Problem Description Math is important!! Many students failed in 2+2’s mathematical test, so let's AC ...

随机推荐

  1. nginx配置相关问题

    1. nginx配置ssl相关问题 1.1 报错nginx: [emerg] the "ssl" parameter requires ngx_http_ssl_module in ...

  2. 计算两个日期之间相差的天数(带带负数) 支持格式YYYY-mm-dd和YYYY-mm-dd HH:mm:ss

    /** * 计算两个日期之间相差的天数(带带负数) 支持格式YYYY-mm-dd比较 * @param higDate 减数 * @param lowDate 被减数 * @returns 差值天数 ...

  3. rpm相关

    rpm命令是RPM软件包的管理工具.rpm原本是Red Hat Linux发行版专门用来管理Linux各项套件的程序,由于它遵循GPL规则且功能强大方便,因而广受欢迎.逐渐受到其他发行版的采用.RPM ...

  4. seaweedfs使用记录

    搭建seaweedfs 在github上面clone,然后cd到docker目录使用docker-compose up -d就可以启动seaweedfs 启动以后通过xxx:9333可以看到效果 上传 ...

  5. split slice splice的简单区别

    split slice splice的简单区别 split: 分割 //字符串方法 string.split let str = 'hello world'; //str.split('') 以什么东 ...

  6. WPFのStyle TargetType的不同写法

    一.隐式写法 <Style TargetType="TextBlock"> <Setter Property="/> </Style> ...

  7. ionic3配合使用docker build代码时的显示仓库配置问题

    1.未配置前的报错提示: 会一直提示push失败 2.在/etc/docker目录下新建 daemon.json文件,内容为: { "insecure-registries":[& ...

  8. 基于 Scrapy-redis 两种形式的分布式爬虫

    基于 Scrapy-redis 两种形式的分布式爬虫 .caret, .dropup > .btn > .caret { border-top-color: #000 !important ...

  9. 如何通过命令行编写调试第一个C++程序(UNIX)

    1.文件保存以.cc,.cpp等结尾: 2.bash窗口调试命令:cc prog1.cc,编译器生成可执行问价,Unix系统中为a.out,windows中一般以filename.exe; 3.(1) ...

  10. iview select下拉框的蜜汁小坑

    前言 最近使用iview的select下拉选择器,遇到一个很神奇的问题:选中下拉框里面的一个值,但是再去点下拉框的时候就只剩刚才选中的数据了.感觉应该是插件把刚才选中的数据当做的搜索条件,所以需要做的 ...