整理自其他优秀博文及自己理解。

目录

  • 无约束优化
  • 等式约束
  • 不等式约束(KKT条件)

1、无约束优化

无约束优化问题即高数下册中的 “多元函数的极值"  部分。

驻点:所有偏导数皆为0的点;

极值点:在邻域内最大或最小的点;

最值点:在定义域内最大或最小的点;

关系:

驻点不一定是极值点,极值点一定是驻点;

极值点不一定是最值点,最值点一定是极值点;

求解最值:

求出所有的极值点,将所有的极值点带入函数中,最大或最小的那个就是最值点。

2、等式约束

等式约束问题即高数下册中的 “条件极值  拉格朗日乘数法” 部分。

对于$z=f(x,y)$在$\varphi(x,y)=0$的条件下的最值问题:

构造拉格朗日函数:$L(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y)$;

对拉格朗日函数求解,得到的即为在条件$\varphi(x,y)=0$下,$z=f(x,y)$所有可能的极值点。再利用问题本身的其他约束条件(如果有的话)筛选极值点,比较之后求得最值点。

直观的解释:目标函数和约束函数在最优解处的法线共线,即$\bigtriangledown f(x,y)=\lambda\bigtriangledown g(x,y)$

具体证明请查阅高数课本。

3、不等式约束

当约束是不等式的时候,可以在不等式约束中加入松弛变量,使其变为等式约束问题,再进行一些分析。

最后$x^*$是极值点的必要条件(KKT条件)为:

$f(x)=\left\{
\begin{aligned}
\bigtriangledown f(x) & = & \lambda \bigtriangledown c_i(x) \\
\lambda_ic_i(x) & = & 0\\
\lambda_i & \geq & 0
\end{aligned}
\right.$

不等式约束可以直接利用KKT条件求出可能的极值点。

具体推导和证明可参见:https://zhuanlan.zhihu.com/p/26514613

他们之间的关系:(此图来自知乎上链接,入侵可删)

至此,梳理完毕。

优化问题及KKT条件的更多相关文章

  1. 真正理解拉格朗日乘子法和 KKT 条件

        这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如 ...

  2. 含有不等式约束的优化问题——KKT条件

    优化问题: 其中, 定义:对于一个不等式约束,如果,那么称不等式约束是处起作用的约束. 定义:设满足,设为起作用不等式约束的下标集: 如果向量:是线性无关的,则称是一个正则点. 下面给出某个点是局部极 ...

  3. 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)

    SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...

  4. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  5. PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...

  6. 关于拉格朗日乘子法和KKT条件

    解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42 ...

  7. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  8. 拉格朗日乘子法和KKT条件

    拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件 ...

  9. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

随机推荐

  1. web前端典型示例

    1.轨迹回放:https://openlayers.org/en/v4.6.5/examples/feature-move-animation.html https://blog.csdn.net/s ...

  2. python and 用法

    >>> 1 and [] and [1] [] >>> 1 and [2] and [1] [1] >>> 0 and [1] and [2] 0

  3. python unittest 之mock

    1.什么是mockunittest.mock是一个用于在Python中进行单元测试的库,Mock翻译过来就是模拟的意思,顾名思义这个库的主要功能是模拟一些东西.它的主要功能是使用mock对象替代掉指定 ...

  4. Java学习之多线程(线程安全问题及线程同步)

    一.线程安全问题产生前提:1.多线程操作共享数据2.线程任务中有多条代码 class Ticket implements Runnable { //2.共享数据 private int num = 1 ...

  5. 加载的DAL数据访问层的类型

    using System; using System.Collections; using System.Reflection; using CSFrameworkV4_5.Core; using C ...

  6. Elasticsearch后台运行步骤

    Elasticsearch后台运行步骤 1.cmd 到elasticsearch 中bin目录下 2.elasticsearch-service 出现  3.安装服务 elasticsearch-se ...

  7. Java + selenium window()接口方法介绍

    在浏览器启动的代码中,有一段关于window接口的调用,这篇文章就是来解释介绍这个接口的.代码如下 driver.manage().window().maxmize(); window接口主要是用来控 ...

  8. go 学习之gorm

    gorm是一个饱受好评的orm框架,此处数据库我们以mysql为例 import ( "github.com/jinzhu/gorm" _ "github.com/jin ...

  9. nginx的原理

    Nginx会按需同时运行多个进程:一个主进程(master)和几个工作进程(worker),配置了缓存时还会有缓存加载器进程 (cache loader)和缓存管理器进程(cache manager) ...

  10. oracle sys_refcursor用法和ref cursor区别

    --创建过程,参数为sys_refcursor,为out型 create or replace procedure aabbsys_refcursor(o out sys_refcursor) is ...