HMM 传统后向算法,已实现,仅供参考。

package jxutcm.edu.cn.hmm.model;

import jxutcm.edu.cn.hmm.bean.HMMHelper;
import jxutcm.edu.cn.util.TCMMath;

/**
 * 后向算法
 * 目的:
 * 1、先计算后向变量矩阵
 * 2、再用后向变量矩阵 来 计算一个观测序列的概率
 * @author aool
 */
public class Backward extends HMM{
    public int[] O;//观测序列observe//如yellow red blue yellow green 这些在enum Color {red,yellow,blue,green }的索引位置
    
    public double[][] beta; //后向变量矩阵
    
    /**
     * flag 表示 A和B是否是自然对数化(lnX)  true: A和B自然对数化后传进来  false: A和B未自然对数化
     */
    public Backward(double[][] A, double[][] B, double[] PI, int[] O, boolean flag) {
        super(A, B, PI, flag);
        this.O=O;
    }
    
    public Backward(HMM hmm, int[] O){
        super(hmm);
        this.O=O;
    }
    
    /**
     * 【计算后向变量矩阵】
     * 在时间t、位于隐藏状态为s_i(第i个隐藏状态,共N种隐藏状态)的条件下,hmm输出观察序列O(t+1)...O(T)的概率
     * beta[ t ][ i ] = beta_t( i ) = log(P(O(t+1)...O(T) | q_t=s_i, λ))
     */
    public void CalculateBackMatrix(){
        int T = O.length;
        beta = new double[ T ][ N ];//每一时刻(每行)上 可能出现的多个状态的发生的后向变量概率
        //1、初始化——将T时刻、第i种隐藏状态输出观察序列的后向变量设置为1即log(1)=0
        for (int i = 0; i < N; i++){
            beta[ T-1 ][ i ] = 0; // = log(1) // should be hmm.logA[k][0]
        }
        //2、归纳计算——b_t(i)
        for (int t = T - 1 - 1; t >= 0; t--){//第 t 时刻下,从T-2开始向前算——下标从0开始——T-1表示最终时刻
            for (int i = 0; i < N; i++) {//第 i 种隐状态下
                double sum = Double.NEGATIVE_INFINITY; // = log(0)
                for (int j = 0; j < N; j++){//到第 j 种隐状态下的累计概率——b[t][i] = b_t(i) =∑Aij * Bj(O_t+1) *b_t+1( j )  其中b_t+1( j ) =b[t+1][j],求和符号上面是N,下面是j=1开始 
                    // sum + = A[ i ][ j ] * B[ j ][ O(t+1) ] * beta[ t+1 ][ j ]
                    sum = TCMMath.logplus( sum, logA[ i ][ j ] + logB[ j ][ O[ t+1 ] ] + beta[t + 1][ j ]);
                }
                //beta[ t ][ i ] = 【t 时刻 所有 隐藏状态 i】到达 【t+1时刻 隐藏状态 j】并【t+1时刻显示出O( t+1 )】的后向变量概率
                //beta[ t ][ i ] = ∑ ( A[ i ][ j ] * B[ j ][ O(t+1) ] * beta[ t+1 ][ j ] ) 求和符号表示 1<=j <=N
                beta[ t ][ i ] = sum;//在 【t 时刻、第 i 种隐藏状态】 下 输出观察序列 Ot+1……OT(已知观测序列的局部) 发生的概率
            }
        }
    }

    /**
     * 【计算一个观测序列的概率】——前提是先计算后向变量矩阵——返回的是自然对数
     * P( O | μ ) = ∑ PI_i*B_i*beta_1( i ) (求和上界N,求和下界i=1)——求所有隐藏状态在t=1时刻的累计和就是 观测序列的概率
     * 计算 t=0 时刻、位于第 0 状态下的 输出观察序列 O0……OT(已经观测序列的局部)发生的概率
     */
    public double logProb() {
        double sum = Double.NEGATIVE_INFINITY; // = log(0)
        for (int i = 0; i < N; i++){
            sum = TCMMath.logplus( sum, logPI[ i ] + logB[ i ][ O[0] ] + beta[ 0 ][ i ]);
        }
        return sum;
    }
    
    /**
     * 打印后向变量矩阵
     */
    public void print() {
        for (int j = 0; j < N; j++) {
            for (int i = 0; i < beta.length; i++){
                System.out.print(HMMHelper.fmtlog( beta[ i ][ j ]) );
            }
            System.out.println();
        }
    }

}

HMM 传统后向算法的更多相关文章

  1. HMM 自学教程(七)前向后向算法

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

  2. HMM 前向后向算法(转)

    最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码 ...

  3. 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

  4. 隐马尔可夫(HMM)、前/后向算法、Viterbi算法

    HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...

  5. 条件随机场CRF(二) 前向后向算法评估标记序列概率

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...

  6. HMM-前向后向算法

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

  7. HMM-前向后向算法(附python实现)

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

  8. HMM-前向后向算法(附代码)

    目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...

  9. HMM-前向后向算法与实现

    目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...

随机推荐

  1. Upload 上传

    通过点击或者拖拽上传文件 点击上传 通过 slot 你可以传入自定义的上传按钮类型和文字提示.可通过设置limit和on-exceed来限制上传文件的个数和定义超出限制时的行为.可通过设置before ...

  2. warning: accessed via instance reference

    提示如图: 先简单翻译一下: 静态成员***通过实例对象访问 显示通过类实例而不是类本身调用方法和属性. 现有一个类Test,有静态方法methods和静态属性fields. 对于静态变量或方法,推荐 ...

  3. PRISM 4 - RegisterViewWithRegion & Custom Export Attributes

    5down votefavorite   I am using Prism 4 with MEF Extensions and the MVVM pattern. During initializat ...

  4. SAE Django如何禁止外部IP访问

    在SAE上基于Django搭建的Web工程有时需要禁止来自某些特定IP地址的访问请求. 例如一个为搭建在SAE的其他项目提供服务的内部工程,可以设置为只允许SAE内部的IP地址访问,从而提高项目的安全 ...

  5. java:Hibernate框架3(使用Myeclipse逆向工程生成实体和配置信息,hql语句各种查询(使用hibernate执行原生SQL语句,占位符和命名参数,封装Vo查询多个属性,聚合函数,链接查询,命名查询),Criteria)

    1.使用Myeclipse逆向工程生成实体和配置信息: 步骤1:配置MyEclipse Database Explorer: 步骤2:为项目添加hibernate的依赖: 此处打开后,点击next进入 ...

  6. SQL注入漏洞详解

    目录 SQL注入的分类 判断是否存在SQL注入 一:Boolean盲注 二:union 注入 三:文件读写 四:报错注入 floor报错注入 ExtractValue报错注入 UpdateXml报错注 ...

  7. iOS 开发】解决使用 CocoaPods 执行 pod install 时出现 - Use the `$(inherited)` flag ... 警告

    公司项目在执行 pod install 的时候总是出现很多黄色的警告,因为是警告并不会影响项目的正常编译,一直没有在意,但是总是有很多警告看起来很不舒服,于是就花了点时间解决掉了,下面将解决方法记录下 ...

  8. webdriver中判断元素是否存在的方法

    selenium.webdriver中没有内置的判断元素是否存在的方法,所以定义一个方法,如果找到该元素则返回True,否则返回False: from selenium import webdrive ...

  9. python 并发编程 多线程 GIL与多线程

    GIL与多线程 有了GIL的存在,同一时刻同一进程中只有一个线程被执行 多进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势 1.cpu到底是用来做计算的,还是用来做I/ ...

  10. jenkins pipline和jenkinsfile

    Jenkins Pipeline(或简称为 "Pipeline")是一套插件,将持续交付的实现和实施集成到 Jenkins 中. Jenkins Pipeline 提供了一套可扩展 ...