题意:给定一张n点m边的图,点带点权,定义点覆盖的权值为点权之积,问所有点覆盖的权值之和膜q

n<=36, 1<=a[i]<=1e9,1e8<=q<=1e9

思路:n<=36,考虑middle in the middle分成两个点数接近的点集L和R

对于L,枚举其子集S,判断S能否覆盖所有L内部的边,预处理出所有合法的S的超集的贡献

对于R,枚举其子集T,判断T能否覆盖所有R内部的边,如果可以则可以推出L,R之间在确定R中选T的前提下左边至少需要选点集T’,答案即为T的点权之积*T’的超集的点权积之和

对于判断覆盖和根据T推T'使用了大量位运算加速

需要注意的是如果二进制左右移位可能超边界则要使用ull

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
//typedef pair<ll,ll>P;
#define N 300010
#define M 2000010
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const //ll MOD=1e9+7,inv2=(MOD+1)/2;
double eps=1e-;
int INF=1e9;
int dx[]={-,,,};
int dy[]={,,-,}; ull s[M];
ll a[N],f[N]; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} int isok1(int S,int l,int r)
{
rep(i,l,r)
if(!(S>>i&))
{
ull now=((s[i]<<(-r))>>(-r));
if((now&S)!=now) return ;
}
return ;
} int isok2(int S,int l,int r,int mid)
{
rep(i,l,r)
if(!(S>>i&))
{
ll now=(s[i+mid]>>mid);
if((now&S)!=now) return ;
}
return ;
} int main()
{
int cas=read();
rep(v,,cas)
{
int n=read(),m=read();
ll MOD;
scanf("%I64d",&MOD);
int mid=n/;
rep(i,,n-) scanf("%I64d",&a[i]);
mem(s,);
rep(i,,m)
{
int x=read(),y=read();
x--; y--;
s[x]|=1ll<<y;
s[y]|=1ll<<x;
}
int S1=(<<mid)-;
rep(i,,S1) f[i]=;
rep(i,,S1)
{
ll t=;
rep(j,,mid-)
if(i>>j&) t=t*a[j]%MOD;
if(isok1(i,,mid-)) f[i]=t;
} rep(i,,mid-)
rep(j,,S1)
if(!(j>>i&)) f[j]=(f[j]+f[j^(<<i)])%MOD; int S2=(<<(n-mid))-;
ll ans=;
rep(i,,S2)
{
ll t=;
rep(j,,n-mid-)
if(i>>j&) t=t*a[j+mid]%MOD;
if(isok2(i,,n-mid-,mid))
{
ll base=;
rep(j,,mid-)
{
ull now=(s[j]>>mid);
if((now&i)!=now) base|=<<j;
}
ans=(ans+t*f[base]%MOD)%MOD;
}
}
printf("Case #%d: ",v);
printf("%I64d\n",ans);
}
return ;
}

【gym102222K】Vertex Covers(高维前缀和,meet in the middle)的更多相关文章

  1. Vertex Covers(高维前缀和)

    Vertex Covers 时间限制: 5 Sec  内存限制: 128 MB提交: 5  解决: 3 题目描述 In graph theory, a vertex cover of a graph ...

  2. BZOJ.5092.[Lydsy1711月赛]分割序列(高维前缀和)

    题目链接 \(Description\) \(Solution\) 首先处理\(a_i\)的前缀异或和\(s_i\).那么在对于序列\(a_1,...,a_n\),在\(i\)位置处分开的价值为:\( ...

  3. HDU.5765.Bonds(DP 高维前缀和)

    题目链接 \(Description\) 给定一张\(n\)个点\(m\)条边的无向图.定义割集\(E\)为去掉\(E\)后使得图不连通的边集.定义一个bond为一个极小割集(即bond中边的任意一个 ...

  4. SPOJ.TLE - Time Limit Exceeded(DP 高维前缀和)

    题目链接 \(Description\) 给定长为\(n\)的数组\(c_i\)和\(m\),求长为\(n\)的序列\(a_i\)个数,满足:\(c_i\not\mid a_i,\quad a_i\& ...

  5. LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望

    传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...

  6. Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望

    传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...

  7. BZOJ5092:[Lydsy1711月赛]分割序列(贪心,高维前缀和)

    Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b_2 xor...xor b ...

  8. HihoCoder - 1496:寻找最大值(高维前缀和||手动求子集)

    描述 给定N个数A1, A2, A3, ... AN,小Ho想从中找到两个数Ai和Aj(i ≠ j)使得乘积Ai × Aj × (Ai AND Aj)最大.其中AND是按位与操作. 小Ho当然知道怎么 ...

  9. BZOJ:5092 [Lydsy1711月赛]分割序列(贪心&高维前缀和)

    Description 对于一个长度为n的非负整数序列b_1,b_2,...,b_n,定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b _2 xor...xor ...

  10. BZOJ4036:按位或 (min_max容斥&高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

随机推荐

  1. 【Linux开发】OpenCV在ARM上的移植

    与X86 Linux类似,请参考:Linux 下编译安装OpenCV 本文在此基础上进行进一步操作. 网络上很多移植编译的方法比较老,多数针对OpenCV 1.0,而且方法很麻烦,不仔细操作很容易出错 ...

  2. 【Linux开发】如何更改linux文件的拥有者及用户组(chown和chgrp)

    本文整理自: http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/ http://ydlmlh.iteye.c ...

  3. linux sed 命令 实现对文件的增删改替换查 实验

    1. 统一实验文本 # 创建包含下面内容的文件,后面的操作都会使用这个文件 [root@MongoDB ~]# cat person.txt ,mike,CEO ,jack,CTO ,yy,CFO , ...

  4. C++ 中的new、malloc、namespace

    1,这些新引入的成员想要解决 C 语言中存在的一些问题, 2,动态内存分配: 1,C++ 中的动态内存分配: 1,C++ 中通过 new 关键字进行基于类型的动态内存申请: 1,C 语言中自身不包含动 ...

  5. 基于bs4库的HTML标签遍历方法

    基于bs4库的HTML标签遍历方法 import requests r=requests.get('http://python123.io/ws/demo.html') demo=r.text HTM ...

  6. 搜索专题: HDU1372Knight Moves

    Knight Moves Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  7. 声明对象的方式/构造函数/原型/this指向

      函数的发展历程(声明函数的方式):     1.通过Object构造函数或字面量的方式创建单个对象 var obj = new Object; obj.name="新华"; o ...

  8. 吴恩达机器学习7:代价函数(Cost function)

    一.简介 1.在线性回归中,我们有一个这样的训练集,M代表训练样本的数量,假设函数即用来进行预测的函数是这样的线性函数的形式,我们接下来看看怎么选择这两个参数: 2.如下图中,怎么选择两个参数来更好的 ...

  9. CSS样式 换行

    强制不换行 div{ white-space:nowrap; } 自动换行 div{ word-wrap: break-word; word-break: normal; } 强制英文单词断行 div ...

  10. oracle给用户赋dblink权限

    create database link 别名(可任意起) connect to 需要连接库的用户名identified by 需要连接库的用户名 using '(DESCRIPTION =(ADDR ...