B - Sumdiv(第三周)
题目链接:https://vjudge.net/contest/154063#problem/B
题意:
求A^B的所有约数(即因子)之和,并对其取模 9901再输出。
解题思路:
要求有较强 数学思维 的题
应用定理主要有三个:
要求有较强 数学思维 的题
应用定理主要有三个:
(1) 整数的唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2) 约数和公式:
对于已经分解的整数A=(p1^k1)(p2^k2)(p3^k3)….(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
(3) 同余模公式:
(a+b)%m=(a%m+b%m)%m
(a*b)%m=(a%m*b%m)%m
有了上面的数学基础,那么本题解法就很简单了:
1: 对A进行素因子分解
分解A的方法:
A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;
当A%2!=0时,则A对下一个连续素数3不断取模…
以此类推,直到A==1为止。
注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。
最后得到A = p1^k1 * p2^k2 * p3^k3 … pn^kn.
故 A^B = p1^(k1*B) * p2^(k2*B) … pn^(kn*B);
2:A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
3: 用递归二分求等比数列1+pi+pi^2+pi^3+…+pi^n:
(1)若n为奇数,一共有偶数项,则:
1 + p + p^2 + p^3 +…+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +…+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);
4:反复平方法计算幂次式p^n
这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。
以p=2,n=8为例
常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2
这样做的要做8次乘法
而反复平方法则不同,
定义幂sq=1,再检查n是否大于0,
While,循环过程若发现n为奇数,则把此时的p值乘到sq
{
n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4
n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2
n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p
n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环
}
则sq=256就是所求,显然反复平方法只做了3次乘法
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int MOD=;
typedef long long LL;
int p[];
int n[];
int A,B;
int ji(int A)
{
int k=,i;
for(i=; i*i<=A;)
{
if(A%i==)
{
n[k]=;
p[k]=i;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==)
i++;
else i+=;
}
if(A!=)
{
p[k]=A;
n[k++]=;
}
return k;
} LL pow(LL p,LL n)
{
LL ans=;
while(n>)
{
if(n%) ans=(ans*p)%MOD;
n/=;
p=p*p%MOD;
}
return ans;
} LL sum(LL p,LL n)
{
if(n==)
return ;
if(n%)
return (sum(p,n/)*(+pow(p,n/+)))%MOD;
else return (sum(p,n/-)*(+pow(p,n/+))+pow(p,n/))%MOD;
}
int main()
{ scanf("%d%d",&A,&B);
int k,i,s;
k = ji(A);
s = ;
for(i=; i<k; i++)
{
s = (s*(sum(p[i],n[i]*B)%MOD))%MOD;
}
printf("%d\n",s);
return ;
}
B - Sumdiv(第三周)的更多相关文章
- 三周,用长轮询实现Chat并迁移到Azure测试
公司的OA从零开始进行开发,继简单的单点登陆.角色与权限.消息中间件之后,轮到在线即时通信的模块需要我独立去完成.这三周除了逛网店见爱*看动漫接兼职,基本上都花在这上面了.简单地说就是用MVC4基于长 ...
- Coursera系列-R Programming第三周-词法作用域
完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...
- JAVA第三周作业(从键盘输入若干数求和)
JAVA第三周作业(从键盘输入若干数求和) 在新的一周,我学习了JAVA的IO编程.下面的代码实现了从键盘输入若干数求和的目标.import java.util.Scanner; public cla ...
- 20145213《Java程序设计》第三周学习总结
20145213<Java程序设计>第三周学习总结 教材学习内容总结 正所谓距离产生美,上周我还倾心于Java表面的基础语法.其简单的流程结构,屈指可数的基本类型分类,早已烂熟于心的运算符 ...
- 20145304 Java第三周学习报告
20145304 <Java程序设计>第三周学习总结 教材学习内容总结 1.定义类: 类定义时使用class关键词,建立实例要使用new关键词. 代码如下: /*定义类 书上例子 衣服的型 ...
- 20145330《Java程序设计》第三周学习总结
20145330 <Java程序设计>第三周学习总结 第三周知识的难度已经逐步上升,并且一周学习两章学习压力也逐渐加大,需要更高效率的来完成学习内容,合理安排时间. 类与对象 对象(Obj ...
- 20145337《Java程序设计》第三周学习总结
20145337 <Java程序设计>第三周学习总结 教材学习内容总结 类与对象 类与对象的关系:要产生对象必须先定义类,类是对象的设计图,对象是类的实例.我觉得在视频中对类与对象关系的描 ...
- Linux内核设计第三周——构造一个简单的Linux系统
Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...
- 20145218 《Java程序设计》第三周学习总结
20145218 <Java程序设计>第三周学习总结 教材学习内容总结 定义类 编写程序要产生对象就要先定义类.类是对象的设计图,对象是类的实例.类定义时使用class关键词,建立实例时, ...
随机推荐
- 使用itchat完成微信自动回复
import itchat from itchat.content import * # 微信自动回复 @itchat.msg_register([TEXT]) def text_reply(msg) ...
- Canvas入门08-绘制仪表盘
需求 实现下图所示的仪表盘的绘制. 分析 我们先来将仪表盘进行图形拆分,并定义尺寸. 我们绘制的逻辑: 绘制中心圆 绘制环外圈圆 绘制环内圈圆 绘制刻度内圈圆 绘制刻度线 绘制刻度文字 绘制指针 定义 ...
- 第十一周总结 继承、this和super的区别和用法、方法的重写和重载
一.继承 1.子类继承父类,通过一个关键字 extends 2.子类的对象可以调用父类中的(public protected)属性和方法 当作自己的来使用 3.子类可以添加自己独有的属性和方法 4.子 ...
- nodejs 对接微信 express 对接微信
安装引用 npm install express npm install body-parser npm install express-xml-bodyparser npm install axio ...
- Coding 地址
Coding 连接 https://dev.tencent.com/u/leexi
- 目标检测(三) Fast R-CNN
引言 之前学习了 R-CNN 和 SPPNet,这里做一下回顾和补充. 问题 R-CNN 需要对输入进行resize变换,在对大量 ROI 进行特征提取时,需要进行卷积计算,而且由于 ROI 存在重复 ...
- Enlarge GCD(素数筛)
题意 删去最少的数,使gcd变大 题解 只要保留相同素数因子最多的数即可. 素数筛. C++代码 #include<bits/stdc++.h> using namespace std; ...
- P2505 [HAOI2012]道路
传送门 统计每条边被最短路经过几次,点数不大,考虑计算以每个点为起点时对其他边的贡献 对于某个点 $S$ 为起点的贡献,首先跑一遍最短路,建出最短路的 $DAG$ 考虑 $DAG$ 上的某条边被以 $ ...
- js面向过程-拖拽
1.步骤分析: 1.1 获取id 1.2 当鼠标点击时执行的js 1.3当鼠标移动时执行的js 1.4当鼠标放开时执行的js 2.代码实现 <!DOCTYPE html> <html ...
- 如何在github上部署自己的前端项目
很多时候我们想需要一个地址就可以访问自己的前端作品, 但是注册一个服务器和域名是需要花钱,很多小伙伴都不愿意, 其实这种前端静态页面github就可以帮我们预览其效果,而且只要在有网的情况下都可以访问 ...