B - Sumdiv

题目链接:https://vjudge.net/contest/154063#problem/B

题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

解题思路:

要求有较强 数学思维 的题

应用定理主要有三个:

要求有较强 数学思维 的题

应用定理主要有三个:

(1) 整数的唯一分解定理:

  任意正整数都有且只有一种方式写出其素因子的乘积表达式。

  A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2) 约数和公式:

对于已经分解的整数A=(p1^k1)(p2^k2)(p3^k3)….(pn^kn)

有A的所有因子之和为

S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3) 同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模…

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3  pn^kn. 
故 A^B = p1^(k1*B) * p2^(k2*B)  pn^(kn*B);

2:A^B的所有约数之和为:

 sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].

3: 用递归二分求等比数列1+pi+pi^2+pi^3+…+pi^n:

(1)若n为奇数,一共有偶数项,则: 
1 + p + p^2 + p^3 +…+ p^n

  = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

(2)若n为偶数,一共有奇数项,则: 
1 + p + p^2 + p^3 +…+ p^n

  = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

4:反复平方法计算幂次式p^n

这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

以p=2,n=8为例

常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

这样做的要做8次乘法

而反复平方法则不同,

定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4

n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int MOD=;
typedef long long LL;
int p[];
int n[];
int A,B;
int ji(int A)
{
int k=,i;
for(i=; i*i<=A;)
{
if(A%i==)
{
n[k]=;
p[k]=i;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==)
i++;
else i+=;
}
if(A!=)
{
p[k]=A;
n[k++]=;
}
return k;
} LL pow(LL p,LL n)
{
LL ans=;
while(n>)
{
if(n%) ans=(ans*p)%MOD;
n/=;
p=p*p%MOD;
}
return ans;
} LL sum(LL p,LL n)
{
if(n==)
return ;
if(n%)
return (sum(p,n/)*(+pow(p,n/+)))%MOD;
else return (sum(p,n/-)*(+pow(p,n/+))+pow(p,n/))%MOD;
}
int main()
{ scanf("%d%d",&A,&B);
int k,i,s;
k = ji(A);
s = ;
for(i=; i<k; i++)
{
s = (s*(sum(p[i],n[i]*B)%MOD))%MOD;
}
printf("%d\n",s);
return ;
}

B - Sumdiv(第三周)的更多相关文章

  1. 三周,用长轮询实现Chat并迁移到Azure测试

    公司的OA从零开始进行开发,继简单的单点登陆.角色与权限.消息中间件之后,轮到在线即时通信的模块需要我独立去完成.这三周除了逛网店见爱*看动漫接兼职,基本上都花在这上面了.简单地说就是用MVC4基于长 ...

  2. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  3. JAVA第三周作业(从键盘输入若干数求和)

    JAVA第三周作业(从键盘输入若干数求和) 在新的一周,我学习了JAVA的IO编程.下面的代码实现了从键盘输入若干数求和的目标.import java.util.Scanner; public cla ...

  4. 20145213《Java程序设计》第三周学习总结

    20145213<Java程序设计>第三周学习总结 教材学习内容总结 正所谓距离产生美,上周我还倾心于Java表面的基础语法.其简单的流程结构,屈指可数的基本类型分类,早已烂熟于心的运算符 ...

  5. 20145304 Java第三周学习报告

    20145304 <Java程序设计>第三周学习总结 教材学习内容总结 1.定义类: 类定义时使用class关键词,建立实例要使用new关键词. 代码如下: /*定义类 书上例子 衣服的型 ...

  6. 20145330《Java程序设计》第三周学习总结

    20145330 <Java程序设计>第三周学习总结 第三周知识的难度已经逐步上升,并且一周学习两章学习压力也逐渐加大,需要更高效率的来完成学习内容,合理安排时间. 类与对象 对象(Obj ...

  7. 20145337《Java程序设计》第三周学习总结

    20145337 <Java程序设计>第三周学习总结 教材学习内容总结 类与对象 类与对象的关系:要产生对象必须先定义类,类是对象的设计图,对象是类的实例.我觉得在视频中对类与对象关系的描 ...

  8. Linux内核设计第三周——构造一个简单的Linux系统

    Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...

  9. 20145218 《Java程序设计》第三周学习总结

    20145218 <Java程序设计>第三周学习总结 教材学习内容总结 定义类 编写程序要产生对象就要先定义类.类是对象的设计图,对象是类的实例.类定义时使用class关键词,建立实例时, ...

随机推荐

  1. netcore 使用redis session 分布式共享

    首先准备redis服务器(docker 和redis3.0内置的哨兵进行高可用设置) 网站配置Redis作为存储session的介质(配置文件这些略).然后可以了解一下MachineKey这个东西.( ...

  2. java基础笔记(10)

    Html:载体      CSS:样式   JavaScript:特效 html: 1. <html></html>称为根标签,所有的网页标签都在<html>< ...

  3. 数据库设计时,每个表要不要都设置自增主键ID!(转)

    逻辑数据库设计 - 需要ID(谈主键Id) 本文的目标就是要确认那些使用了主键,却混淆了主键的本质而造成的一种反模式. 一.确立主键规范 每个了解数据库设计的人都知道,主键对于一张表来说是一个很重要, ...

  4. [LeetCode] 132. 分割回文串 II

    题目链接 : https://leetcode-cn.com/problems/palindrome-partitioning-ii/ 题目描述: 给定一个字符串 s,将 s 分割成一些子串,使每个子 ...

  5. Scala学习笔记(5)类

    1.简单类和无参方法 calss Counter{ private var value = 0  //必须初始字段 def increment(){value +=1} //方法默认是公有的 def ...

  6. css水平垂直居中问题

    水平居中: 行内元素:text-align:center; 块级元素:magin:0 auto; 子元素设置:position:absolute;  left:50%;  transform:tran ...

  7. redis基础及redis特殊场景使用描述

    数据类型 String set list hash zset redis原理 单线程:redis是单线程+io多路复用:检查文件描述的就绪状态 对比memchached:多线程+锁 redis优势 解 ...

  8. 45. Jump Game II (JAVA)

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  9. mplayer - Linux下的电影播放器

    概要 mplayer [选项] [ 文件 | URL | 播放列表 | - ] mplayer [全局选项] 文件1 [特定选项] [文件2] [特定选项] mplayer [全局选项] {一组文件和 ...

  10. java Byte源码分析

    源码: public static int toUnsignedInt(byte x) { return ((int) x) & 0xff; } 原理: -128(byte) 原码:10000 ...