B - Sumdiv

题目链接:https://vjudge.net/contest/154063#problem/B

题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

解题思路:

要求有较强 数学思维 的题

应用定理主要有三个:

要求有较强 数学思维 的题

应用定理主要有三个:

(1) 整数的唯一分解定理:

  任意正整数都有且只有一种方式写出其素因子的乘积表达式。

  A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2) 约数和公式:

对于已经分解的整数A=(p1^k1)(p2^k2)(p3^k3)….(pn^kn)

有A的所有因子之和为

S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3) 同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模…

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3  pn^kn. 
故 A^B = p1^(k1*B) * p2^(k2*B)  pn^(kn*B);

2:A^B的所有约数之和为:

 sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].

3: 用递归二分求等比数列1+pi+pi^2+pi^3+…+pi^n:

(1)若n为奇数,一共有偶数项,则: 
1 + p + p^2 + p^3 +…+ p^n

  = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

(2)若n为偶数,一共有奇数项,则: 
1 + p + p^2 + p^3 +…+ p^n

  = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

4:反复平方法计算幂次式p^n

这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

以p=2,n=8为例

常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

这样做的要做8次乘法

而反复平方法则不同,

定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4

n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int MOD=;
typedef long long LL;
int p[];
int n[];
int A,B;
int ji(int A)
{
int k=,i;
for(i=; i*i<=A;)
{
if(A%i==)
{
n[k]=;
p[k]=i;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==)
i++;
else i+=;
}
if(A!=)
{
p[k]=A;
n[k++]=;
}
return k;
} LL pow(LL p,LL n)
{
LL ans=;
while(n>)
{
if(n%) ans=(ans*p)%MOD;
n/=;
p=p*p%MOD;
}
return ans;
} LL sum(LL p,LL n)
{
if(n==)
return ;
if(n%)
return (sum(p,n/)*(+pow(p,n/+)))%MOD;
else return (sum(p,n/-)*(+pow(p,n/+))+pow(p,n/))%MOD;
}
int main()
{ scanf("%d%d",&A,&B);
int k,i,s;
k = ji(A);
s = ;
for(i=; i<k; i++)
{
s = (s*(sum(p[i],n[i]*B)%MOD))%MOD;
}
printf("%d\n",s);
return ;
}

B - Sumdiv(第三周)的更多相关文章

  1. 三周,用长轮询实现Chat并迁移到Azure测试

    公司的OA从零开始进行开发,继简单的单点登陆.角色与权限.消息中间件之后,轮到在线即时通信的模块需要我独立去完成.这三周除了逛网店见爱*看动漫接兼职,基本上都花在这上面了.简单地说就是用MVC4基于长 ...

  2. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  3. JAVA第三周作业(从键盘输入若干数求和)

    JAVA第三周作业(从键盘输入若干数求和) 在新的一周,我学习了JAVA的IO编程.下面的代码实现了从键盘输入若干数求和的目标.import java.util.Scanner; public cla ...

  4. 20145213《Java程序设计》第三周学习总结

    20145213<Java程序设计>第三周学习总结 教材学习内容总结 正所谓距离产生美,上周我还倾心于Java表面的基础语法.其简单的流程结构,屈指可数的基本类型分类,早已烂熟于心的运算符 ...

  5. 20145304 Java第三周学习报告

    20145304 <Java程序设计>第三周学习总结 教材学习内容总结 1.定义类: 类定义时使用class关键词,建立实例要使用new关键词. 代码如下: /*定义类 书上例子 衣服的型 ...

  6. 20145330《Java程序设计》第三周学习总结

    20145330 <Java程序设计>第三周学习总结 第三周知识的难度已经逐步上升,并且一周学习两章学习压力也逐渐加大,需要更高效率的来完成学习内容,合理安排时间. 类与对象 对象(Obj ...

  7. 20145337《Java程序设计》第三周学习总结

    20145337 <Java程序设计>第三周学习总结 教材学习内容总结 类与对象 类与对象的关系:要产生对象必须先定义类,类是对象的设计图,对象是类的实例.我觉得在视频中对类与对象关系的描 ...

  8. Linux内核设计第三周——构造一个简单的Linux系统

    Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...

  9. 20145218 《Java程序设计》第三周学习总结

    20145218 <Java程序设计>第三周学习总结 教材学习内容总结 定义类 编写程序要产生对象就要先定义类.类是对象的设计图,对象是类的实例.类定义时使用class关键词,建立实例时, ...

随机推荐

  1. 使用itchat完成微信自动回复

    import itchat from itchat.content import * # 微信自动回复 @itchat.msg_register([TEXT]) def text_reply(msg) ...

  2. Canvas入门08-绘制仪表盘

    需求 实现下图所示的仪表盘的绘制. 分析 我们先来将仪表盘进行图形拆分,并定义尺寸. 我们绘制的逻辑: 绘制中心圆 绘制环外圈圆 绘制环内圈圆 绘制刻度内圈圆 绘制刻度线 绘制刻度文字 绘制指针 定义 ...

  3. 第十一周总结 继承、this和super的区别和用法、方法的重写和重载

    一.继承 1.子类继承父类,通过一个关键字 extends 2.子类的对象可以调用父类中的(public protected)属性和方法 当作自己的来使用 3.子类可以添加自己独有的属性和方法 4.子 ...

  4. nodejs 对接微信 express 对接微信

    安装引用 npm install express npm install body-parser npm install express-xml-bodyparser npm install axio ...

  5. Coding 地址

    Coding 连接 https://dev.tencent.com/u/leexi

  6. 目标检测(三) Fast R-CNN

    引言 之前学习了 R-CNN 和 SPPNet,这里做一下回顾和补充. 问题 R-CNN 需要对输入进行resize变换,在对大量 ROI 进行特征提取时,需要进行卷积计算,而且由于 ROI 存在重复 ...

  7. Enlarge GCD(素数筛)

    题意 删去最少的数,使gcd变大 题解 只要保留相同素数因子最多的数即可. 素数筛. C++代码 #include<bits/stdc++.h> using namespace std; ...

  8. P2505 [HAOI2012]道路

    传送门 统计每条边被最短路经过几次,点数不大,考虑计算以每个点为起点时对其他边的贡献 对于某个点 $S$ 为起点的贡献,首先跑一遍最短路,建出最短路的 $DAG$ 考虑 $DAG$ 上的某条边被以 $ ...

  9. js面向过程-拖拽

    1.步骤分析: 1.1 获取id 1.2 当鼠标点击时执行的js 1.3当鼠标移动时执行的js 1.4当鼠标放开时执行的js 2.代码实现 <!DOCTYPE html> <html ...

  10. 如何在github上部署自己的前端项目

    很多时候我们想需要一个地址就可以访问自己的前端作品, 但是注册一个服务器和域名是需要花钱,很多小伙伴都不愿意, 其实这种前端静态页面github就可以帮我们预览其效果,而且只要在有网的情况下都可以访问 ...