题目描述

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

输入输出格式

输入格式:

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

输出格式:

共n行,每行一个整数表示满足要求的数对(x,y)的个数

输入输出样例

输入样例#1: 复制

2
2 5 1 5 1
1 5 1 5 2
输出样例#1: 复制

14
3

说明

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题意:求出满足该式子的区间里的对数

思路:莫比乌斯反演

和前面破译密码那道非常类似,这里是限制了区间是在 [a,b] 与  [c,d]  ,这里我们之前的做法只能求出  1-a 与  1-b的值

这么我们就需要容斥一下

g[a,b]代表1-a与 1-b的求出的值

所以我们可以得出      =   g[b,d] - g[a-1,c] - g[b,c-1] + g[a-1,c-1]

然后再求值即可

#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef int ll;
ll vis[maxn+];
ll mu[maxn+];
ll sum[maxn+];
ll a,b,c,d;
void init(){
for(int i=;i<maxn;i++){
vis[i]=;
mu[i]=;
}
for(int i=;i<maxn;i++){
if(vis[i]==){
mu[i]=-;
for(int j=*i;j<maxn;j+=i){
vis[j]=;
if((j/i)%i==) mu[j]=;
else mu[j]*=-;
}
}
}
sum[]=;
for(int i=;i<maxn;i++){
sum[i]=sum[i-]+mu[i];
}
}
ll g(ll x,ll y){
ll ans=;
if(x>y) swap(x,y);
for(ll l=,r=;l<=x;l=r+){
r=min(x/(x/l),y/(y/l));
ans+=(sum[r]-sum[l-])*(x/l)*(y/l);
}
return ans;
}
int main(){
init();
ll t;
ll k;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
ll ans=g(b/k,d/k)-g((a-)/k,d/k)-g(b/k,(c-)/k)+g((a-)/k,(c-)/k);
printf("%d\n",ans);
}
}

洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)的更多相关文章

  1. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  2. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  3. 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)

    题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...

  4. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...

  5. 洛谷P2522 - [HAOI2011]Problem b

    Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...

  6. Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演

    设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  9. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

随机推荐

  1. 安装uWebSocketIO

    https://github.com/uNetworking/uWebSockets sudo apt-get install libuv1-dev git clone https://github. ...

  2. [CSP-S模拟测试]:次芝麻(数学)

    题目描述 小$K$和小$X$都是小次货.身为小次货,最重要的事情就是次啦!所以他们正在纠结如何分芝麻次.一开始,小$K$有$n$个芝麻,小$X$有$m$个芝麻.因为他们都想次更多芝麻,所以每次手中芝麻 ...

  3. java并发编程笔记(七)——线程池

    java并发编程笔记(七)--线程池 new Thread弊端 每次new Thread新建对象,性能差 线程缺乏统一管理,可能无限制的新建线程,相互竞争,有可能占用过多系统资源导致死机或者OOM 缺 ...

  4. 104、Tensorflow 的变量重用

    import tensorflow as tf # 在不同的变量域中调用conv_relu,并且声明我们想创建新的变量 def my_image_filter(input_images): with ...

  5. 用 Flask 来写个轻博客 (18) — 使用工厂模式来生成应用对象

    Blog 项目源码:https://github.com/JmilkFan/JmilkFan-s-Blog 目录 目录 前文列表 工厂模式 使用工厂方法 Factory Method 创建 app 对 ...

  6. java String 类特点

    String的设计是一个典型的单一模式 String str1="AAAA":String str2="AAAA": 这生成两个对象吗?不是.在内存中,这是同一 ...

  7. 把 MongoDB 当成是纯内存数据库来使用(Redis 风格)

    基本思想 将MongoDB用作内存数据库(in-memory database),也即,根本就不让MongoDB把数据保存到磁盘中的这种用法,引起了越来越多的人的兴趣.这种用法对于以下应用场合来讲,超 ...

  8. Unity获取Android和iOS手机系统电量及网络状况

    最开始考虑使用中间静态链接库来调用手机系统自带的API,但是在研究的过程中发现Android系统将电量等信息记录在了固定的文件中,所以只需要在C#中直接读取就可以而不需要中间库. a.Android版 ...

  9. 面试题57:数组中2个数的和(也是leetcode题目)

    题目:给定一个整数数列,找出其中和为特定值的那两个数. 你可以假设每个输入都只会有一种答案,同样的元素不能被重用. 示例: 给定 nums = [2, 7, 11, 15], target = 9 因 ...

  10. js日历算法

    页面 <div class="un1"> <h2>服务档期</h2> <div class="date-panel" ...