poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)
ACM Computer Factory
| Time Limit: 1000MS | Memory Limit: 65536K | |||
| Total Submissions: 10940 | Accepted: 4098 | Special Judge | ||
Description
As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.
Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.
Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.
Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.
Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.
The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.
After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.
As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.
Input
Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.
Constraints
1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000
Output
Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.
If several solutions exist, output any of them.
Sample Input
Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1
Sample Output
Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0
Hint
Source
一发AC。。。都在题解里了。
/*
本题还是比较入门级别的水题吧,思路很好想,选出所有的源点和所有的汇点,还有所有的可行边(如果一台电脑能够接受上一台电脑输出之后的结果,就说明可以从他们之间建立一条边),
接着按照多源多汇和结点容量最大流建边,跑一波最大流就ok啦,还有就是记录路径和结点容量值,嘤嘤嘤。
如果需要打印路径和统计流量,就将图备份一次,并且在存图的时候存入边的起点就ok了,跑完最大流检查一遍哪些边被用过了就ok。
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int maxn = + , maxm = * + , maxp = + , inf = 0x3f3f3f3f;
int p, n, ps[maxn << ][], pe[maxn << ][], q[maxn << ], s1[maxn << ], e1[maxn << ];
int sizes, sizet, tot, tot1, cnt, head[maxn << ], que[maxn << ], dep[maxn << ], cur[maxn << ], sta[maxn << ];
struct Edge {
int to, next, cap, flow, from;
} edge[maxm << ], edges[maxm << ];
struct node {
int u, v, w;
} ans[maxm << ]; void init() {
memset(head, -, sizeof head);
tot = tot1 = ;
sizes = sizet = cnt = ;
} void addedge(int u, int v, int w, int rw = ) {
edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = ; edge[tot].from = u;
edge[tot].next = head[u]; head[u] = tot ++;
edge[tot].to = u; edge[tot].cap = rw; edge[tot].flow = ; edge[tot].from = v;
edge[tot].next = head[v]; head[v] = tot ++; edges[tot1].to = v; edges[tot1].cap = w; edges[tot1].flow = ; edges[tot1].from = u;
edges[tot1].next = head[u]; head[u] = tot1 ++;
edges[tot1].to = u; edges[tot1].cap = rw; edges[tot1].flow = ; edges[tot1].from = v;
edges[tot1].next = head[v]; head[v] = tot1 ++;
} bool bfs(int s, int t, int n) {
int front = , tail = ;
memset(dep, -, sizeof dep[] * (n + ));
dep[s] = ;
que[tail ++] = s;
while(front < tail) {
int u = que[front ++];
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dep[v] == -) {
dep[v] = dep[u] + ;
if(v == t) return true;
que[tail ++] = v;
}
}
}
return false;
} int dinic(int s,int t, int n) {
int maxflow = ;
while(bfs(s, t, n)) {
for(int i = ; i < n; i ++) cur[i] = head[i];
int u = s, tail = ;
while(cur[s] != -) {
if(u == t) {
int tp = inf;
for(int i = tail - ; i >= ; i --)
tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow);
maxflow += tp;
for(int i = tail - ; i >= ; i --) {
edge[sta[i]].flow += tp;
edge[sta[i] ^ ].flow -= tp;
if(edge[sta[i]].cap - edge[sta[i]].flow == ) tail = i;
}
u = edge[sta[tail] ^ ].to;
}
else if(cur[u] != - && edge[cur[u]].cap > edge[cur[u]].flow && dep[u] + == dep[edge[cur[u]].to]) {
sta[tail ++] = cur[u];
u = edge[cur[u]].to;
}
else {
while(u != s && cur[u] == -)
u = edge[sta[-- tail] ^ ].to;
cur[u] = edge[cur[u]].next;
}
}
}
return maxflow;
} int main() {
while(~scanf("%d %d", &p, &n)) {
init();
int s = * n + , t = s + ;
for(int i = ; i <= n; i ++) {
scanf("%d", &q[i]);//读入某一台机器的工作效率
for(int j = ; j <= p; j ++) scanf("%d", &ps[i][j]);//读入初始状态
for(int j = ; j <= p; j ++) scanf("%d", &pe[i][j]);//读入输出状态
}
bool flag = true;
for(int i = ; i <= n; i ++) {
for(int j = ; j <= n; j ++) {
if(i ^ j) {//如果i != j
flag = true;
for(int k = ; k <= p; k ++) {//判断机器j是否可以接受机器i加工之后的状态
if(pe[i][k] + ps[j][k] == ) {
flag = false;
break;
}
}
if(flag) addedge(i + n, j, inf);
}
}
flag = true;
for(int k = ; k <= p; k ++) {//判断机器i是否为源点
if(ps[i][k] % == ) {
flag = false;
break;
}
}
if(flag) s1[sizes ++] = i;
flag = true;
for(int k = ; k <= p; k ++) {//判断机器i是否为汇点
if(pe[i][k] == ) {
flag = false;
break;
}
}
if(flag) e1[sizet ++] = i;
}
for(int i = ; i < sizes; i ++) addedge(s, s1[i], inf);
for(int i = ; i < sizet; i ++) addedge(n + e1[i], t, inf);
for(int i = ; i <= n; i ++) addedge(i, n + i, q[i]);
int maxflow = dinic(s, t, * n + );
for(int i = ; i <= tot; i += ) {
if(edge[i].flow > && edge[i].from != s && edge[i].to != t && abs(edge[i].from - edge[i].to) != n) {
ans[++ cnt].u = edge[i].from > n ? edge[i].from - n: edge[i].from;
ans[cnt].v = edge[i].to > n ? edge[i].to - n : edge[i].to;
ans[cnt].w = edges[i].cap - edge[i].cap;
// ans[++ cnt] = (node){edge[i].from, edge[i].to, edge[i].flow};
ans[cnt].w = edge[i].flow;
}
}
if(maxflow == ) cnt = ;
printf("%d %d\n", maxflow, cnt);
for(int i = ; i <= cnt; i ++) {
printf("%d %d %d\n", ans[i].u, ans[i].v, ans[i].w);
}
}
return ;
}
poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)的更多相关文章
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ 3436 ACM Computer Factory 最大流,拆点 难度:1
题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...
- poj 3436 ACM Computer Factory 最大流+记录路径
题目 题意: 每一个机器有一个物品最大工作数量,还有一个对什么物品进行加工,加工后的物品是什么样.给你无限多个初始都是000....的机器,你需要找出来经过这些机器操作后最多有多少成功的机器(111. ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- POJ - 3436 ACM Computer Factory 网络流
POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...
- POJ - 3436 ACM Computer Factory(最大流)
https://vjudge.net/problem/POJ-3436 题目描述: 正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...
- POJ 3436 ACM Computer Factory(最大流+路径输出)
http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...
- POJ 3436 ACM Computer Factory (拆点+输出解)
[题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...
- POJ 3436 ACM Computer Factory
题意: 为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...
随机推荐
- 在 LaTeX 中同步缩放 TikZ 与其中的 node
PGF/TikZ 是 Till Tantau 开发的基于 TeX 的绘图引擎.因其可以直接在 LaTeX 文稿中通过代码绘制向量图,所以是目前流行的 LaTeX 绘图解决方案之一. 在 tikzpic ...
- Python重写父类方法__len__
class Liar(list): def __len__(self): return super().__len__() + 3 # 直接写 super().__len__() 而没有 return ...
- rocketmq运维管理
# 运维管理--- ### 1 集群搭建 #### 1.1 单Master模式 这种方式风险较大,一旦Broker重启或者宕机时,会导致整个服务不可用.不建议线上环境使用,可以用于本地测试. #### ...
- System.currentTimeMillis和System.nanoTime()
ns(nanosecond):纳秒, 时间单位.一秒的10亿分之一,即等于10的负9次方秒.常用作 内存读写速度的单位. 1纳秒=0.000001 毫秒 1纳秒=0.00000 0001秒 jav ...
- Linux技术学习要点,您掌握了吗---初学者必看
1.如何做好嵌入式Linux学习前的准备? 要成为一名合格的嵌入式Linux工程师,就需要系统的学习软.硬件相关领域内的知识,需要在最开始就掌握开发的规范和原则,养成良好的工作习惯.为了确保学习的效果 ...
- mysql UNIQUE约束 语法
mysql UNIQUE约束 语法 作用:UNIQUE 约束唯一标识数据库表中的每条记录. 江苏大理石平台 说明:UNIQUE 和 PRIMARY KEY 约束均为列或列集合提供了唯一性的保证.PRI ...
- luogu P1068 分数线划定 x
P1068 分数线划定 题目描述 世博会志愿者的选拔工作正在 A 市如火如荼的进行.为了选拔最合适的人才,A 市对 所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试.面试分数线根 据 ...
- Apache2.4常用编译参数
转载文章,亲试 Apache2.4以后的版本编译依赖apr,所以,编译之前需要先安装apr及apr-util. 编译参数只是一个参考作用,这个参数是我平常使用的,具体工作中的需求还是要区别对待的 一些 ...
- skip a transaction in goldengate
skip a transaction in goldengate [oracle@db ]$ ggsci Oracle GoldenGate Command Interpreter for Oracl ...
- 三十二、python操作XML文件
'''XML:模块 xml总结 1.解析 str 文件 tree,ElementTree,type root,Element,type2.操作 Element: tag,text,find,iter, ...