This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (<= 1,000), the number of vertices in the graph, and M (<= 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (<= 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

开门见山的题。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <map>
#define Max 1005
using namespace std;
int n,m,k,limit[Max],exa[Max],a,b,mp[Max][Max],ans[Max],ant;///limit存某个点前面有几个点先行 int check()
{
int p[Max];
for(int i = ;i <= n;i ++)///limit转到p
{
p[i] = limit[i];
}
for(int i = ;i < n;i ++)
{
if(p[exa[i]])///p为正表示顺序不合法
{
return ;
}
for(int j = ;j <= n;j ++)///如果合法 把受它限制的点 p都减1
{
if(mp[exa[i]][j])p[j] --;
}
}
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = ;i < m;i ++)
{
scanf("%d%d",&a,&b);
mp[a][b] = ;
limit[b] ++;
}
scanf("%d",&k);
for(int i = ;i < k;i ++)
{
for(int j = ;j < n;j ++)
{
scanf("%d",&exa[j]);
}
if(!check())
{
ans[ant ++] = i;
}
}
for(int i = ;i < ant;i ++)
{
if(i)printf(" %d",ans[i]);
else printf("%d",ans[i]);
}
}

1146. Topological Order (25)的更多相关文章

  1. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

  2. PAT甲级——1146 Topological Order (25分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  3. PAT 1146 Topological Order[难]

    1146 Topological Order (25 分) This is a problem given in the Graduate Entrance Exam in 2018: Which o ...

  4. [PAT] 1146 Topological Order(25 分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  5. PAT 甲级 1146 Topological Order

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...

  6. PAT 1146 Topological Order

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  7. 1146 Topological Order

    题意:判断序列是否为拓扑序列. 思路:理解什么是拓扑排序就好了,简单题.需要注意的地方就是,因为这里要判断多个,每次判断都会改变入度indegree[],因此记得要把indegree[]留个备份.ps ...

  8. PAT_A1146#Topological Order

    Source: PAT A1146 Topological Order (25 分) Description: This is a problem given in the Graduate Entr ...

  9. PAT A1146 Topological Order (25 分)——拓扑排序,入度

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

随机推荐

  1. tree 命令

    LMXMN117:Mac Driver will.wei$ tree -N >/tmp/savs.txt       (1)tree -a 显示所有文件和目录   (2)tree -d 显示目录 ...

  2. 我的"开发工具箱"

    我使用的IDEA插件 Free Mybatis plugin Alibaba Java Coding Guidelines 我的IDEA开发配置 配置Maven Runner -DarchetypeC ...

  3. TypeScript快速笔记(一)

    刚学习TypeScript,但因为马上要用,主要是寻求先快速上手,而后再求精. 推荐学习网站: 1)https://www.runoob.com/typescript/ts-tutorial.html ...

  4. Powershell 邮件发送

    目录 目录 前言 Send-MailMessage NETMail 使用OutLook发送邮件 前言 最近领导想在winServer2012上搞个自动发送邮件的计划任务,下面有几种发送邮件的方式. 如 ...

  5. dataframe指定位置插入行

    1 loc( ) 函数可以定位行后,并直接赋值插入. 如下可见loc函数对直接改变原来行的值 df = pd.DataFrame({ '动物' : ['狗','猫','兔'], '数量' : [ 3, ...

  6. Java中StringHelp

    import java.util.Collection; import java.util.Map; import java.util.UUID; public class StringHelper ...

  7. git.ZC_命令积累

    1.删除文件 git rm 想要删除的文件的名字及其后缀 git commit -m "对本次提交的描述信息" git push 删除文件夹,执行命令: git rm 想要删除的文 ...

  8. 20191105 《Spring5高级编程》笔记-第6章

    第6章 Spring JDBC支持 Spring官方: 位于Spring Framework Project下. 文档: https://docs.spring.io/spring-framework ...

  9. Ansible安装配置(CentOS 7)

    Ansible 中的概念 任务 Task——多个 Task 顺序执行,在每个 Task 执行结束可以通知 Hanlder 触发新操作. 变量 Variable——用户定义的变量. 环境 Facts—— ...

  10. python基础-4.1 open 打开文件练习:修改haproxy配置文件

    1.如何在线上环境优雅的修改配置文件? 配置文件名称ini global log 127.0.0.1 local2 daemon maxconn 256 log 127.0.0.1 local2 in ...