题目

分析

设表示每一行的状态,用一个4位的二进制来表示,当前这一行中的每一个位数对下一位有没有影响。

设\(f_{i,s}\)表示,做完了的i行,其状态为s,的方案数。

两个状态之间是否可以转移就留给读者自己思考了。

答案就是\(f_{n,0}\)因为最后一行对下一行不能造成影响。

然而,这样只有60分。

100分是个矩阵快速幂,

B矩阵构造很简单,当两个状态\(s、s'\)可以转移,那么,B矩阵\(g_{s,s'}=1\)。

当i等于零时, A矩阵为{1, 0 \(<\)repeats 15 times\(>\)}

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
const long long N=500005;
using namespace std;
long long m,n,e[16][16]=
{
{1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1},
{0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0},
{0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0},
{1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0},
{0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0},
{1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0},
{1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
};
long long r[16]={1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},f[16],g[16][16];
long long time()
{
long long f1[16];
for(int i=0;i<=15;i++)
f1[i]=f[i];
for(int i=0;i<=15;i++)
{
f[i]=0;
for(int j=0;j<=15;j++)
f[i]=(f[i]+f1[j]*g[j][i]%m)%m;
}
}
long long time1()
{
long long f1[16][16];
for(int i=0;i<=15;i++)
for(int j=0;j<=15;j++)
f1[i][j]=g[i][j];
for(int i=0;i<=15;i++)
for(int j=0;j<=15;j++)
{
g[i][j]=0;
for(int k=0;k<=15;k++)
{
g[i][j]=(g[i][j]+f1[i][k]*f1[k][j]%m)%m;
}
}
}
long long mi(long long x)
{
while(x)
{
if(x&1) time();
time1();
x/=2;
}
}
int main()
{
while(1)
{
for(int i=0;i<=15;i++)
f[i]=r[i];
for(int i=0;i<=15;i++)
for(int j=0;j<=15;j++)
g[i][j]=e[i][j];
scanf("%lld%lld",&n,&m);
if(n==0 && m==0) break;
mi(n);
cout<<f[0]<<endl;
}
}

【NOIP2016提高A组模拟9.17】数格子的更多相关文章

  1. 【JZOJ4787】【NOIP2016提高A组模拟9.17】数格子

    题目描述 输入 输出 样例输入 1 10000 3 10000 5 10000 0 0 样例输出 1 11 95 数据范围 每个测试点数据组数不超过10组 解法 状态压缩动态规划. 设f[i][j]表 ...

  2. 【NOIP2016提高A组模拟9.17】小a的强迫症

    题目 分析 题目要求第i种颜色的最后一个珠子要在第i+1种颜色的最后一个珠子之前, 那么我们从小到大枚举做到第i种,把第i种的最后一颗珠子取出,将剩下的\(num(i)-1\)个珠子插入已排好的前i- ...

  3. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Matrix

    题目 分析 假设,我们从\(F_{i,2}\)出发,那么对\(F_{n,n}\)的贡献就是\(某个系数乘以a^{n-i}b^{n-1}r_i\): 同理,如果从\(F_{2,i}\)出发,那么对\(F ...

  4. [JZOJ4788] 【NOIP2016提高A组模拟9.17】序列

    题目 描述 题目大意 一个序列,每次可以使一段区间内的所有数加一(模四). 问最少的操作次数. 思考历程 一看这题目,诶,这不就是那道叫密码锁的题目吗? 然后随便打一打,样例过了,就再也没有思考这一题 ...

  5. 【NOIP2016提高A组模拟9.17】序列

    题目 分析 首先用\(a_i\)表示达到目标的步数\(B_i-A_i(mod 4)\) 根据粉刷栅栏,先不管mod 4的情况,答案就是\(\sum\max(a_i-a_{i+1},0)\) 那我们刚才 ...

  6. NOIP2016提高A组模拟9.17总结

    第一题,典型的隔板问题, 但是我忘记隔板问题怎么打,一开始在花了1小时,还是没想出来,果断弃疗, 最后的40分钟,我打完了第二题,接着又用了20分钟推敲出一种极其猥琐的式子来代替,可惜预处理的阶乘忘记 ...

  7. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)总结

    考的还ok,暴力分很多,但有点意外的错误. 第一题找规律的题目,推了好久.100分 第二题dp,没想到. 第三题树状数组.比赛上打了个分段,准备拿60分,因为时间不够,没有对拍,其中有分段的20分莫名 ...

  8. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Binary

    题目 分析 首先每个数对\(2^i\)取模.也就是把每个数的第i位以后删去. 把它们放进树状数组里面. 那么当查询操作, 答案就位于区间\([2^i-x,2^{i-1}-1-x]\)中,直接查询就可以 ...

  9. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Value

    题目 分析 易证,最优的答案一定是按\(w_i\)从小到大放. 我们考虑dp, 先将w从小到大排个序,再设\(f_{i,j}\)表示当前做到第i个物品,已选择了j个物品的最大值.转移就是\[f_{i, ...

随机推荐

  1. Prometheus在Kubernetes下的服务发现机制

    Prometheus作为容器监控领域的事实标准,随着以Kubernetes为核心的云原生热潮的兴起,已经得到了广泛的应用部署.灵活的服务发现机制是Prometheus和Kubernetes两者得以连接 ...

  2. eventfd(2) 结合 select(2) 分析

    本文代码选自内核 4.17 eventfd(2) - 创建一个文件描述符用于事件通知. 使用 源码分析 参考 #include <sys/eventfd.h> int eventfd(un ...

  3. 黑龙江网络安全技能竞赛awd后门分析复现

    0x0环境 0x1分析复现 0x2感想 围绕主办方留下的浅显后门可以打满整场,想拿第一还是要搞定深层后门

  4. 超详细的CentOS8Linux新功能介绍 镜像iso下载安装

    在这文章中,我们会使用图解的方式演示 CentOS 8 的安装方法. CentOS8中软件和系统管理请参照https://www.cnblogs.com/fusheng11711/p/11809963 ...

  5. ansible-playbook 案例

    nginx的安装 编写nginx的自动部署文件nginx.yml      hosts主机更改为自己定义的 访问目标主机组的IP地址,查看测试页面 测试页面:显示的是本机ip 1 <h1> ...

  6. Hbase 0.92.1集群数据迁移到新集群

    老集群 hbase(main):001:0> status 4 servers, 0 dead, 0.0000 average load hbase(main):002:0> list T ...

  7. Sqlserver限制用户访问指定数据库

    USE master CREATE LOGIN test --要创建的用户名 WITH PASSWORD = '123456', --密码 DEFAULT_DATABASE = DBTest, --指 ...

  8. (4.13)mysql备份原理(转)

    关键词:mysqldump原理,--single-transaction,mysql备份原理 转自:https://www.cnblogs.com/cchust/p/5452557.html MySQ ...

  9. springBoot2.0使用@slf4j注解记录日志

    1. idea上安装Lombok插件 File --> setting --> Plugins 安装完后重启idea 2. 在springboot项目中修改pom.xml,添加如下配置引入 ...

  10. 02:Redis常见面试题

    1.1 redis基础面试题 1.什么是Redis?简述它的优缺点? 1. Redis本质上是一个Key-Value类型的内存数据库,很像memcached. 2. 整个数据库统统加载在内存当中进行操 ...