歌词来源:
我怎么办:https://music.163.com/#/song?id=28111191
1977我不记得了:https://music.163.com/#/song?id=28111192

作曲 : 新沙洞老虎/북극곰
作曲 : 新沙洞老虎/b/pug-k/geug-k/gom
作词 : 新沙洞老虎/북극곰
作词 : 新沙洞老虎/b/pug-k/geug-k/gom

나 어떡해 지금 기억 안나
na eo-ddeo-kae ji-geum gi-eog an-na
아무 기억 안나
a-mu ki-eog an-na
나 어떡해 너 갑자기
na eo-ddeo-kae neo kab-jja-ki
나를 아는 척 해버리면
na-leul a-neun Ceo kae-beo-li-myeon
어? 우리 어디서 봤죠?
eo u-li eo-di-seo pwad-jjyo
Hey baby yo baby yo

hey baby yo baby yo

monday to sunday 나 나 나 어떡해
monday to sunday na na na eo-ddeo-kae
hey baby yo baby yo

hey baby yo baby yo

모르겠어 어떡해 나 나 나 어떡해
mo-leu-ged-sseo eo-ddeo-kae na na na eo-ddeo-kae
내 말투랑 표정 좋아하는 노래
nae mal-Tu-lang Pyo-jeong jo-a-ha-neun no-lae
대체 네가 어떻게 알았어
tae-Ce ne-ga eo-ddeo-Ke a-lad-sseo
어제 뭐했는지 몇 시에 갔는지
eo-je mwo-haed-neun-ji myeod xi-e gad-neun-ji
대체 누가 너한테 말했어
tae-Ce nu-ga neo-han-Te mal-haed-sseo
첨 만났어 내 앞에 있는 넌
Ceom man-nad-sseo nae a-Pe in-neun neon
아무리 생각해 봐도 기억이 안나요
a-mu-li saeng-ga-kae bwa-do ki-eo-gi an-na-yo
모르겠어 네가 말한 그때
mo-leu-ged-sseo ne-ga ma-lan geu-ddae
확실히 말해 너랑 나랑 뭐했는데
hwag-xxi-li ma-lae neo-lang na-lang mwo-haen-neun-de
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
그니까 우리가
keu-ni-gga u-li-ga
대체 만나 뭘 했는데
tae-Ce man-na mwo laen-neun-de
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
너와 나 첨 만난
neo-wa na Ceom man-nan
이 느낌 뭔지 아니까
i neu-ggim mwon-ji a-ni-gga
나 어떡해 (이런 상황)
na eo-ddeo-kae(i-leon sang-hwang
나 어떡해
na eo-ddeo-kae
내 친구랑 아나요 학교는 어딘데요 하나도 맞아 드는게 없어
nae qin-gu-lang a-na-yo hag-ggyo-neun eo-din-de-yo ha-na-do ma-ja deu-neun-ge eob-sseo
왜 익숙한 건가요 잠깐 이리 와봐요
wae ig-ssu-kan geon-ga-yo cam-ggan i-li wa-bwa-yo
근데 내 스타일이기는 하네요 와우
keun-de nae seu-Ta-i-li-ki-neun ha-ne-yo wa-u
상관없어 좀 맘에 드는 너
sang-gwan-eob-sseo com ma-me teu-neun neo
조금씩 보다 보니까 너무 귀엽네요
co-keum-xxig po-da po-ni-gga neo-mu ki-yeob-ne-yo
모르겠어 네가 말한 그때
mo-leu-ged-sseo ne-ga ma-lan geu-ddae
확실히 말해 그날 대체 어땠는데
hwag-xi-li ma-lae keu-nal dae-Ce eo-ddaen-neun-de
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
그니까 우리가
keu-ni-gga u-li-ga
대체 만나 뭘 했는데
tae-Ce man-na mwo laen-neun-de
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
우리 어디서 봤더라?
u-li eo-di-seo bwad-ddeo-la
너와 나 첨 만난
neo-wa na Ceom man-nan
이 느낌 뭔지 아니까
i neu-ggim mwon-ji a-ni-gga
나 어떡해 지금 기억 안나
na eo-ddeo-kae ji-geum gi-eog an-na
아무 기억 안나
a-mu ki-eog an-na
나 어떡해 너 갑자기
na eo-ddeo-kae neo kab-jja-ki
나를 아는 척 해버리면
na-leul a-neun Ceo kae-beo-li-myeon
나 어떡해
na eo-ddeo-kae
(Do you know me?)

나 어떡해
na eo-ddeo-kae
(Oh my god oh oh my god)

나 어떡해
na eo-ddeo-kae
(is this happening?)

나 어떡해
na eo-ddeo-kae
(Oh my god oh oh my god)

[T-ARA][나 어떡해/1977 기억 안나][我怎么办/1977我不记得了]的更多相关文章

  1. List Of All Machine Learning Sorted By Citation

    List Of All Machine Learning Sorted By Citation With > 300 citations 2013-10-10 See Citation Anal ...

  2. Cassandra在Windows上安装及使用方法

    http://archive.apache.org/dist/cassandra/2.1.2/ http://docs.datastax.com/en/landing_page/doc/landing ...

  3. 【FZU】1977 Pandora adventure

    http://acm.fzu.edu.cn/problem.php?pid=1977 题意:n×m的网格,有3种格子,'O'必须经过.'*'可以选择经过.'X'不能经过.现在要求路径经过所有'O'且是 ...

  4. bzoj 1977

    题意:求严格的次小生成树.点n<=100000,m<=300000 思路:很容易想到先做一边最小生成树,然后枚举每条非树边(u, v, w),然后其实就是把u,v路径上小于w的最大边替换成 ...

  5. BZOJ 1977: [BeiJing2010组队]次小生成树 Tree( MST + 树链剖分 + RMQ )

    做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... - ...

  6. 1977: [BeiJing2010组队]次小生成树 Tree

    1977: [BeiJing2010组队]次小生成树 Tree https://lydsy.com/JudgeOnline/problem.php?id=1977 题意: 求严格次小生成树,即边权和不 ...

  7. bzoj 1977 [BeiJing2010组队]次小生成树 Tree

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1977 kruscal别忘了先按边权sort.自己觉得那部分处理得还挺好的.(联想到之前某题的 ...

  8. Maximum likelihood from incomplete data via the EM algorithm (1977)

    Maximum likelihood from incomplete data via the EM algorithm (1977)  

  9. 图像滤镜艺术---(Instagram)1977滤镜

    原文:图像滤镜艺术---(Instagram)1977滤镜 图像特效---(Instagram)1977滤镜 本文介绍1977这个滤镜的具体实现,这个滤镜最早是Instagram中使用的 ,由于Ins ...

随机推荐

  1. “融而开放、合以创新”T-HIM融合通信技术开发实战

    本文来自腾讯云技术沙龙,本次沙龙主题为T-HIM融合通信技术开发实战 2018年,企业的数字化转型大规模兴起,"数字化经济"时代来临.如何利用数字化技术来支持业务的转型.增长与创新 ...

  2. Oracle JDBC 连接方式

    格式一:  Oracle JDBC Thin using a ServiceName jdbc:oracle:thin:@//<host>:<port>/<service ...

  3. 你知道吗, CoreGraphics绘图系统和Bezier贝塞尔曲线坐标系的顺时针方向是相反的!

    UIBezierPath是对Core Graphics框架的一种上层封装,目的是让绘图需求可以被更方便的使用. 那你有没有发现被UIBezierPath封装后与之前有什么改变? 答:有三个变化. 1. ...

  4. Scrum 冲刺博客第四篇

    一.当天站立式会议照片一张 二.每个人的工作 (有work item 的ID),并将其记录在码云项目管理中 昨天已完成的工作 新建立了一个list页面用来显示题目,并且创建了列表用来进行题目的存放,将 ...

  5. height百分比失效

    heigh:100%失效 解决方案: 第一种 html, body { height: 100%; } 第二种 div { height: 100%; position: absolute; } 非定 ...

  6. OpenTLD在VS2012和opencv246编译通过

    最近看到了TLD的跟踪视频,觉得很有意思,刚好最近在看行人检测所以就打算下载源码玩一玩,因为源码是Linux版本的(原作者写的是C++和MATLAB的混合编程)C++源码可以在我的博客TLD(一种目标 ...

  7. 多边形游戏(DP)

    Description 多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形.每个顶点被赋予一个整数值,每条边被赋予一个运算符 "+" 或 "*". ...

  8. CSS 基础点

    Part1:font:inherit 字体的设置 设置所有元素的字体保持一致: 所有元素:*{font:inherit;} /* IE8+ */ body体用percent:body{font:100 ...

  9. 最小生成树(prim)

    里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且 ...

  10. drupal7 STMP邮件模块配置

    drupal7.54 STMP  version = "7.x-1.6" 配置:   注意:上面的“用户名”需要和“站点信息”页面的电子邮件地址保持一致,邮件发送才能成功 ---- ...