【刷题】BZOJ 2152 聪聪可可
Description
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input
5
1 2 1
1 3 2
1 4 1
2 5 3
Sample Output
13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。
【数据规模】
对于100%的数据,n<=20000。
Solution
点分治
calc中找的是每个点对3的余数
那么一个联通块中的答案就是(未去重)
\(Md[0]*Md[0]+Md[1]*Md[2]+Md[2]*Md[1]\)
含义就是在这一块中,两人都选了3的倍数,那么最后肯定是3的倍数;一个选了模3余1,一个选了模3余2,加起来还是3的倍数;反过来也是
就算出方案数了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=20000+10,inf=0x3f3f3f3f;
int n,e,to[MAXN<<1],nex[MAXN<<1],w[MAXN<<1],beg[MAXN],d[MAXN],Md[3],size[MAXN],Mx[MAXN],finish[MAXN],root;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
w[e]=z;
}
inline void getroot(int x,int f,int ntotal)
{
Mx[x]=0;size[x]=1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f||finish[to[i]])continue;
else
{
getroot(to[i],x,ntotal);
size[x]+=size[to[i]];
chkmax(Mx[x],size[to[i]]);
}
chkmax(Mx[x],ntotal-size[x]);
if(Mx[x]<Mx[root])root=x;
}
inline void getdeep(int x,int f)
{
Md[d[x]]++;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f||finish[to[i]])continue;
else d[to[i]]=(d[x]+w[i])%3,getdeep(to[i],x);
}
inline int calc(int x,int st)
{
d[x]=st;Md[0]=Md[1]=Md[2]=0;
getdeep(x,0);
return Md[0]*Md[0]+Md[1]*Md[2]+Md[2]*Md[1];
}
inline int solve(int x)
{
int res=calc(x,0);
finish[x]=1;
for(register int i=beg[x];i;i=nex[i])
if(!finish[to[i]])
{
res-=calc(to[i],w[i]%3);
root=0;
getroot(to[i],x,size[to[i]]);
res+=solve(root);
}
return res;
}
inline int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v,w;
read(u);read(v);read(w);
insert(u,v,w);insert(v,u,w);
}
Mx[root=0]=inf;
getroot(1,0,n);
int a=solve(root),b=n*n,d=gcd(a,b);
write(a/d,'/'),write(b/d,'\n');
return 0;
}
【刷题】BZOJ 2152 聪聪可可的更多相关文章
- 【BZOJ 2152】 聪聪可可
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2152 [算法] 点分治 [代码] #include<bits/stdc++.h ...
- BZOJ 2152:聪聪可可(树上点分治)
题目链接 题意 中文题意. 思路 和上一题类似,只不过cal()函数需要发生变化. 题目中要求是3的倍数,那么可以想到 (a + b) % 3 == 0 和 (a % 3 + b % 3) % 3 = ...
- 【BZOJ 2152】聪聪可可 点分治
对于一棵树,fdrt找到重心,然后分治每个子树. 在一棵以重心为根的树上,符合条件的链是: 1.过重心(根) 2.不过重心 对于1我们只需dfs出距离重心(根)的距离然后统计再减去有重叠的边 对于2我 ...
- 「BZOJ 2152」聪聪可可
题目链接 戳这 \(Solution\) 这道题看起来就像点分治对吧.没错就是点分治. 什么是点分治 如果你不会点分治,可以去看看这儿 现在看到这里,首先确保你已经会了点分治,如果不会你还往下看,听不 ...
- bzoj 2152聪聪可可
2152: 聪聪可可 Time Limit: 3 Sec Memory Limit: 259 MB Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰 ...
- bzoj 2152: 聪聪可可 树的点分治
2152: 聪聪可可 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 485 Solved: 251[Submit][Status] Descripti ...
- bzoj 2152 聪聪可可(点分治模板)
2152: 聪聪可可 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 3194 Solved: 1647[Submit][Status][Discuss ...
- BZOJ 2152: 聪聪可可 树分治
2152: 聪聪可可 Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...
- 【BZOJ】2152: 聪聪可可(点分治)
http://www.lydsy.com/JudgeOnline/problem.php?id=2152 随便点分..... 只是我在考虑一个地方逗乐.. 当路径长度mod3=0的点数直接乘起来就好. ...
随机推荐
- django使用流程
1.安装django包 (命令行)>pip install django # conda install django 2.安装成功后,可以新建django项目 1(命令行)>django ...
- spring源码-aop-5
一.在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发 ...
- 电信NB-IOT的温湿度采集器开发记录
1. 首先打开浏览器,登录电信商用服务器,上传profile文件 2. 上传编解码插件在,注意的是,上传编解码插件是电信测试用服务器平台(不同的网址),反正不明白电信搞啥幺蛾子,得两个地方去上传 3. ...
- DSP5509项目之用FFT识别钢琴音调(5)之开始傅里叶变换
1. 首先电脑上下载一个音频模拟的软件 2. 研究下钢琴的声音范围27HZ到4000HZ,那么采样频率需要是信号的两倍频率以上,所以建议采样频率是16KHZ.先看一下采集到的数据,如下是空载时候采集到 ...
- C#是数据类型
C#又开始了 开始数据类型 用的软件是VS2017 E short 短整型 int 中等整型 long 长整形 string 字符串类型 bool 布尔类型(true/flase) 相当于数 ...
- loadrunner之做压力测试要做的准备
前提B/S架构 1.要有个备库和主库保存一致 到时候做压力测试的时候,要断开主库连接到备库.进行测试.以免主库出现垃圾数据.2.节点 判断单节点能承受多大的压力,如200万的用户账号,10万的在线用户 ...
- 获取json键值对的对应字符串
获取json中的姓名 json串ac 关键字key public class Json { public static String json(String key;String ac) { JS ...
- windows环境下apache-apollo服务器搭建及发布订阅测试
查证了一些资料之后,发现 apache-apollo服务器使用的人还是挺多的,资料也比较齐全,所以直接选择 apache-apollo了,具体性能如何,先用起来再说吧: 1.下载 apache-apo ...
- 8 个用于业余项目的优秀 Python 库
在 Python/Django 的世界里有这样一个谚语:为语言而来,为社区而留.对绝大多数人来说的确是这样的,但是,还有一件事情使得我们一直停留在 Python 的世界里,不愿离开,那就是我们可以很容 ...
- 一学就会pip换镜像源
首先介绍一个国内好用的镜像站 阿里云 http://mirrors.aliyun.com/pypi/simple/ 豆瓣 http://pypi.douban.com/simple/ 清华大学 htt ...