【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述
给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等。求总方案数。
输入
第一行一个正整数 $n$ ,表示巧克力的个数。
第二行 $n$ 个整数 $a_i$ 表示每个巧克力的美味值。
输出
输出一行一个整数,表示能使得他们心情契合的吃巧克力的方案数对 998244353 取模的结果。
样例输入
6
1 2 3 4 5 6
样例输出
80
题解
FWT
首先如果两个集合的异或相等,那么它们的异或为0。原问题转化为求选出一个异或和为0的集合并分为两个即可的方案数。
那么设 $f[i][j]$ 表示前 $i$ 个数中选出的数的异或和为 $j$ 的方案数。那么就有 $f[i][j]=f[i-1][j]+2·f[i-1][j\ xor\ a[i]]$ 。
可以发现这是一个异或卷积的形式,相当于每次卷的是:$b[0]=1,b[a[i]]=2$ ,然而并无卵用 = =
考虑对这个过程进行FWT,那么:
0对每个位置的贡献都是1;
a[i]对某些位置的贡献是2,对某些位置的贡献是-2。
所以每次卷上的 $b$ 数组的每个数都是-1或3。
另有:和的FWT等于FWT的和。
因此把它们求和后进行FWT,那么就知道了每个位置FWT的和。
由于只有-1和3,因此可以解出-1和3的个数,然后快速幂处理一下即可。
最终再逆FWT回来即可。
时间复杂度 $O(n\log n)$
#include <cstdio>
#define N 1050000
#define mod 998244353
typedef long long ll;
ll a[N] , b[N];
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void fwt(ll *a , int n , int flag)
{
int i , j , k , t;
for(i = 1 ; i < n ; i <<= 1)
for(j = 0 ; j < n ; j += (i << 1))
for(k = j ; k < j + i ; k ++ )
t = a[k] , a[k] = (t + a[k + i]) * flag % mod , a[k + i] = (t - a[k + i] + mod) * flag % mod;
}
int main()
{
int n , mx = 0 , m = 1 , i , x;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &x) , a[0] ++ , a[x] += 2;
if(mx < x) mx = x;
}
while(m <= mx) m <<= 1;
fwt(a , m , 1);
for(i = 0 ; i < m ; i ++ )
{
x = (n + a[i]) * 748683265 % mod;
if(((x + n) % mod) & 1) b[i] = (mod - pow(3 , x)) % mod;
else b[i] = pow(3 , x);
}
fwt(b , m , 499122177);
printf("%lld\n" , (b[0] - 1 + mod) % mod);
return 0;
}
【uoj#310】[UNR #2]黎明前的巧克力 FWT的更多相关文章
- uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...
- UOJ#310. 【UNR #2】黎明前的巧克力(FWT)
题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...
- [UOJ UNR#2 黎明前的巧克力]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...
- UOJ #310 黎明前的巧克力 (FWT)
题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
- [UOJ310][UNR #2]黎明前的巧克力
uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- 20155322 2016-2017-2 《Java程序设计》第4周学习总结
20155322 2016-2017-2 <Java程序设计>第4周学习总结 教材学习内容总结 本周的学习内容为课本第六章与第七章: 第六章主要讲继承和多态.首先是我们为什么要学习继承和多 ...
- 20155328 2016-2017-2 《Java程序设计》第三周学习总结
20155328 2016-2017-2 <Java程序设计>第三周学习总结 教材学习内容总结 类是对象的设计图,对象是类的实例.用class定义类,用new新建一个对象. 一个原始码中可 ...
- MySQL主从失败报错误: Got fatal error 1236
一.问题原因及报错误信息 由于MySQL主库意外重启,导致从库无法同步报错如下: 登录从库查看主从同步的错误信息 [root@--- mysql]# vim mysqld-error.log -- : ...
- [cogs347]地震
COGS:地震(平衡树) COGS上一道题...文件名是equake 还是又打了一遍板子... 加个lazy标记就行了... 注意查询时先下传标记(lazy) // It is made by XZZ ...
- jquery.validate使用 - 3
自定义jquery-validate的验证行为 1: 自定义表单提交 设置submitHandler来自定义表单提交动作 $(".selector").validate({ ...
- Struts 2(八):文件上传
第一节 基于Struts 2完成文件上传 Struts 2框架中没有提供文件上传,而是通过Common-FileUpload框架或COS框架来实现的,Struts 2在原有上传框架的基础上进行了进一步 ...
- python基础数据类型3
python_day_5 今日大纲: 1. dict 用大括号{} 括起来. 内部使用key:value的形式来保存数据 {'jay':'周杰伦', "jj":'林俊杰'} 注意: ...
- MindMaster安装教程以及激活破解教程
原文地址:https://www.jianshu.com/p/16d2fc7d8e45 第一.激活必须首先断网 第二.运行安装程序,安装完成后先不要打开 第三.把Cracks文件夹下的文件复制到软件安 ...
- WebGL中使用window.requestAnimationFrame创建主循环
今天总结记录一下WebGL中主循环的创建和作用.我先说明什么是主循环,其实单纯的webgl不存在主循环这个概念,这个概念是由渲染引擎引入的,主循环就是利用一个死循环或无截止条件的递归达到定时刷新can ...
- [T-ARA][너 때문에 미쳐][因为你而疯了]
歌词来源:http://music.163.com/#/song?id=5402880 作曲 : 赵英秀/김태현 [作曲 : 赵英秀/k/gim-Tae-hyeon] 作词 : 辉星 [作词 : 辉星 ...