题意

题目链接

Sol

首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值。但是直接这样然后按照树形背包的套路转移的话会有一种情况无法处理,就是说该节点不选,儿子节点也不选,这样我们就不清楚儿子节点的子节点的贡献了

一种暴力的做法是钦定该节点选,并重新枚举子树中的所有节点,转移出dp值之后背包合并

最后再把\(0\)号节点的合并一次

#include<bits/stdc++.h>
#define chmin(x, y) (x = x < y ? x : y)
#define chmax(x, y) (x = x > y ? x : y)
using namespace std;
const int MAXN = 1001, INF = 2e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, a[MAXN], dis[MAXN], siz[MAXN], f[MAXN][MAXN], g[MAXN][MAXN], ans;
vector<int> v[MAXN];
void dfs2(int x, int fa, int root) {
f[x][0] = dis[root] * a[x];
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i]; if(to == fa) continue;
dfs2(to, x, root);
for(int j = min(K, siz[x]); ~j; j--)
for(int k = 0; k <= min(j, siz[to]); k++)
chmax(f[x][j], f[to][k] + f[x][j - k]);
}
for(int i = siz[x]; i; i--) chmax(f[x][i], g[x][i]);
}
void dfs(int x, int fa) {
dis[x] += dis[fa]; siz[x] = 1;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs(to, x); siz[x] += siz[to];
}
g[x][0] = 0;
memset(f, 0, sizeof(f));
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i]; if(to == fa) continue;
dfs2(to, x, x);
for(int j = min(K, siz[x]); ~j; j--)
for(int k = 0; k <= min(j, siz[to]); k++)
chmax(g[x][j], f[to][k] + g[x][j - k]);
}
for(int i = min(K, siz[x]); i; i--) g[x][i] = g[x][i - 1] + dis[x] * a[x];
}
int main() {
N = read(); K = read();
for(int i = 1; i <= N; i++) {
a[i] = read(); int fa = read(); dis[i] = read();
v[fa].push_back(i);
}
dfs(0, -1);
for(int i = 1; i <= N; i++) ans += dis[i] * a[i];
memset(f, 0, sizeof(f));
int x = 0;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i];
dfs2(to, x, x);
for(int j = min(K, siz[x]); ~j; j--)
for(int k = 0; k <= min(j, siz[to]); k++)
chmax(f[x][j], f[to][k] + f[x][j - k]);
}
int out = INF;
for(int i = 0; i <= K; i++) out = min(out, ans - f[0][i]);
printf("%d\n", out);
return 0;
}

BZOJ1812: [Ioi2005]riv(树形dp)的更多相关文章

  1. 【BZOJ1812】[Ioi2005]riv 树形DP

    [BZOJ1812][Ioi2005]riv Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河, ...

  2. BZOJ 1812: [Ioi2005]riv( 树形dp )

    树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...

  3. BZOJ_1812_[Ioi2005]riv_树形DP

    BZOJ_1812_[Ioi2005]riv_树形DP Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了 ...

  4. bzoj1812 [Ioi2005]riv

    riv 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫B ...

  5. bzoj1812 [IOI2005]riv河流

    题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个 ...

  6. [bzoj1812][IOI2006]riv_多叉树转二叉树_树形dp

    riv bzoj-1812 IOI-2006 题目大意:给定一棵n个点树,要求在上面建立k个收集站.点有点权,边有边权,整棵树的代价是每个点的点权乘以它和它的最近的祖先收集站的距离积的和. 注释:$1 ...

  7. rivers ioi2005 树形dp

    说句实话,写完这道题,很想吐一口血出来,以示我心情的糟糕: 题目很简单,树形dp,正常做30分钟,硬是做了好几个小时,真是伤心. 题解不写了,只是吐个槽,网上没有用背包写的dp,全是左儿子右兄弟写法, ...

  8. 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP

    题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...

  9. 1812: [Ioi2005]riv

    1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][D ...

随机推荐

  1. django 运行报错汇总

    记录自己在使用django开发过程中遇到的问题,不间断更新. (1) 独立运行普通Python脚本调用django中定义的类报错 报错信息: django.core.exceptions.Improp ...

  2. PHP下的浮点运算不准的解决办法

    首先看一段代码: 首先看一段代码: <?php $a = 0.1; $b = 0.7; var_dump(($a + $b) == 0.8); 打印出来的值居然为 boolean false P ...

  3. Java多线程—阻塞队列和生产者-消费者模式

    阻塞队列支持生产者-消费者这种设计模式.该模式将“找出需要完成的工作”与“执行工作”这两个过程分离开来,并把工作项放入一个“待完成“列表中以便在随后处理,而不是找出后立即处理.生产者-消费者模式能简化 ...

  4. Java多线程——对象组合

    我们不希望对每一次的内存访问都进行分析以确保程序是线程安全的,而是希望将一些现有的线程安全组件组合为更大规模的组件或者程序,这里介绍一些组合模式,这些组合模式能够使一个类更容易成为线程安全的,并且在维 ...

  5. Collections.singletonList方法的使用

    方法注释 /** * Returns an immutable list containing only the specified object. * The returned list is se ...

  6. 编写一个算法,将非负的十进制整数转换为其他进制的数输出,10及其以上的数字从‘A’开始的字母表示

    编写一个算法,将非负的十进制整数转换为其他进制的数输出,10及其以上的数字从‘A’开始的字母表示. 要求: 1) 采用顺序栈实现算法: 2)从键盘输入一个十进制的数,输出相应的八进制数和十六进制数. ...

  7. 一、OPENERP 的一个demo

    安装好OPENERP后,使用 ps -aux|grep openerp 从输出的内容可以得到OPENERP的安装信息, /usr/bin/python /usr/bin/openerp-server ...

  8. normalize.css源码解析

    什么是normalize.css?  它是为了帮助我们统一各个浏览器的样式和消除bug的css库. 为什么需要normalize.css,有什么好处? 不像一些reset.css,normalize. ...

  9. android常用Linux命令

    安卓下面有个软件叫终端模拟器,其实就是Linux下的命令行,使用这些命令能有效处理问题. 1.基本知识 “/”,这个英文字母斜杠指的是根目录,类似Windows的C:\,但是Linux下只有一个根目录 ...

  10. Debian9安装桌面环境

    更新安装源 apt-get update 安装 x-window apt-get install x-window-system-core 安装 gnomeapt-get install gnome- ...