BZOJ1812: [Ioi2005]riv(树形dp)
题意
Sol
首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值。但是直接这样然后按照树形背包的套路转移的话会有一种情况无法处理,就是说该节点不选,儿子节点也不选,这样我们就不清楚儿子节点的子节点的贡献了
一种暴力的做法是钦定该节点选,并重新枚举子树中的所有节点,转移出dp值之后背包合并
最后再把\(0\)号节点的合并一次
#include<bits/stdc++.h>
#define chmin(x, y) (x = x < y ? x : y)
#define chmax(x, y) (x = x > y ? x : y)
using namespace std;
const int MAXN = 1001, INF = 2e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, a[MAXN], dis[MAXN], siz[MAXN], f[MAXN][MAXN], g[MAXN][MAXN], ans;
vector<int> v[MAXN];
void dfs2(int x, int fa, int root) {
f[x][0] = dis[root] * a[x];
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i]; if(to == fa) continue;
dfs2(to, x, root);
for(int j = min(K, siz[x]); ~j; j--)
for(int k = 0; k <= min(j, siz[to]); k++)
chmax(f[x][j], f[to][k] + f[x][j - k]);
}
for(int i = siz[x]; i; i--) chmax(f[x][i], g[x][i]);
}
void dfs(int x, int fa) {
dis[x] += dis[fa]; siz[x] = 1;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs(to, x); siz[x] += siz[to];
}
g[x][0] = 0;
memset(f, 0, sizeof(f));
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i]; if(to == fa) continue;
dfs2(to, x, x);
for(int j = min(K, siz[x]); ~j; j--)
for(int k = 0; k <= min(j, siz[to]); k++)
chmax(g[x][j], f[to][k] + g[x][j - k]);
}
for(int i = min(K, siz[x]); i; i--) g[x][i] = g[x][i - 1] + dis[x] * a[x];
}
int main() {
N = read(); K = read();
for(int i = 1; i <= N; i++) {
a[i] = read(); int fa = read(); dis[i] = read();
v[fa].push_back(i);
}
dfs(0, -1);
for(int i = 1; i <= N; i++) ans += dis[i] * a[i];
memset(f, 0, sizeof(f));
int x = 0;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i];
dfs2(to, x, x);
for(int j = min(K, siz[x]); ~j; j--)
for(int k = 0; k <= min(j, siz[to]); k++)
chmax(f[x][j], f[to][k] + f[x][j - k]);
}
int out = INF;
for(int i = 0; i <= K; i++) out = min(out, ans - f[0][i]);
printf("%d\n", out);
return 0;
}
BZOJ1812: [Ioi2005]riv(树形dp)的更多相关文章
- 【BZOJ1812】[Ioi2005]riv 树形DP
[BZOJ1812][Ioi2005]riv Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河, ...
- BZOJ 1812: [Ioi2005]riv( 树形dp )
树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...
- BZOJ_1812_[Ioi2005]riv_树形DP
BZOJ_1812_[Ioi2005]riv_树形DP Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了 ...
- bzoj1812 [Ioi2005]riv
riv 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫B ...
- bzoj1812 [IOI2005]riv河流
题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个 ...
- [bzoj1812][IOI2006]riv_多叉树转二叉树_树形dp
riv bzoj-1812 IOI-2006 题目大意:给定一棵n个点树,要求在上面建立k个收集站.点有点权,边有边权,整棵树的代价是每个点的点权乘以它和它的最近的祖先收集站的距离积的和. 注释:$1 ...
- rivers ioi2005 树形dp
说句实话,写完这道题,很想吐一口血出来,以示我心情的糟糕: 题目很简单,树形dp,正常做30分钟,硬是做了好几个小时,真是伤心. 题解不写了,只是吐个槽,网上没有用背包写的dp,全是左儿子右兄弟写法, ...
- 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP
题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...
- 1812: [Ioi2005]riv
1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][D ...
随机推荐
- 2016级算法期末上机-A.简单·Bamboo's Fight with DDLs I
简单·Bamboo's Fight with DDLs I 分析 一句话:要装满的完全背包问题. 对比完全背包只有一点要改变:初始化为负无穷 传送门: https://buaacoding.cn/pr ...
- [原创] Trie树 php 实现敏感词过滤
目录 背景 简介 存储结构 PHP 其他语言 字符串分割 示例代码 php 优化 缓存字典树 常驻服务 参考文章 背景 项目中需要过滤用户发送的聊天文本, 由于敏感词有将近2W条, 如果用 str_r ...
- P4177 [CEOI2008]order
传送门 答案等于总工作价值减去最小失去的价值 考虑构建最小割模型 在 $S$割 的点表示选,在 $T$割 的点表示不选 对于机器(编号从 $n+1$ 到 $n+m$) $n+i$,连边 $(n+i,T ...
- 在JSP中常见问题,防止SpringMVC拦截器拦截js等静态资源文件的解决方案
方案一.拦截器中增加针对静态资源不进行过滤(涉及spring-mvc.xml) <mvc:resources location="/" mapping="/**/* ...
- 深入理解java集合框架之---------LinkedList
日常开发中,保存一组数据使用的最多的就是 ArrayList, 其次就是 LinkedList 了. 我们知道 ArrayList 是以数组实现的,遍历时很快,但是插入.删除时都需要移动后面的元素,效 ...
- 07 volatile & java 内存模型
一 从单例模式说起 在singleton 单例模式一文中我们详细了解Java中单例模式的实现,不了解的可以先阅读之. 在该文最后我们给出了双重校验锁来保证既实现线程安全,又能够使性能不受很大的影响的单 ...
- 基于RedHat6.5的Greenplum环境配置
安装Greenplum的时候遇到了很多坑,在此记录下 欢迎园友补充问题,共同研究解决! 安装说明 1.环境说明 操作系统:Red hat 6.5 64 位 2.配置规范 2.1基本说明 greenpl ...
- D的小L
D的小L 描述 一天TC的匡匡找ACM的小L玩三国杀,但是这会小L忙着哩,不想和匡匡玩但又怕匡匡生气,这时小L给匡匡出了个题目想难倒匡匡(小L很D吧),有一个数n(0<n<10),写出1 ...
- 对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin ...
- 【angular5项目积累总结】优秀组件以及应用实例
1.手机端 图片预览组件 组件:sideshow 效果图:(预览图全屏 且可以左右移动) code: <div class="row ui-app-s ...