▶ 简单的计算和规约

● 第一种方法,将全局和的指针传入工作函数中进行加和,使用 critical 来控制临界区的访问

 #include <stdio.h>
#include <stdlib.h>
#include <omp.h> const int thread = ; void work(int* globalSum)
{
#pragma omp critical // 使用 critical 来控制临界区的访问
*globalSum += omp_get_thread_num();
return;
} int main(int argc, char* argv[])
{
int threadReal, globalSum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
globalSum = ; // 初始化全局和 #pragma omp parallel num_threads(threadReal)
work(&globalSum); // 将全局和的指针传给每个线程进行计算 printf("\nglobalSum = %d\n", globalSum);
getchar();
return ;
}

● 输出结果,下面几种方法的输出结果均相同,不再重复罗列

globalSum = 

● 第二种方法,使用局部变量,在主函数中进行加和

 #include <stdio.h>
#include <stdlib.h>
#include <omp.h> const int thread = ; int work()
{
return omp_get_thread_num();
} int main(int argc, char* argv[])
{
int threadReal, globalSum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
globalSum = ; #pragma omp parallel num_threads(threadReal)
{
int localSum = work(); // 使用局部变量
#pragma omp critical
globalSum += localSum; // 将局部和加到全局和中
} printf("\nglobalSum = %d\n", globalSum);
getchar();
return ;
}

● 第三种方法,使用规约子句

 #include <stdio.h>
#include <stdlib.h>
#include <omp.h> const int thread = ; int work()
{
return omp_get_thread_num();
} int main(int argc, char* argv[])
{
int threadReal, globalSum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
globalSum = ; #pragma omp parallel num_threads(threadReal) reduction(+ : globalSum)// 要求对 globalSum 使用加法规约
globalSum += work(); printf("\nglobalSum = %d\n", globalSum);
getchar();
return ;
}

● 第四种方法,使用 parallel for 循环

 #include <stdio.h>
#include <stdlib.h>
#include <omp.h> const int thread = ; int work()
{
return omp_get_thread_num();
} int main(int argc, char* argv[])
{
int i, threadReal, globalSum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
globalSum = ; #pragma omp parallel for num_threads(threadReal) reduction(+:globalSum)// 联用了规约子句和 parallel for 循环
for (i = ; i < threadReal; i++)
globalSum += work(); printf("\nglobalSum = %d\n", globalSum);
getchar();
return ;
}

▶ 单独的 parallel for 用法

 #include <stdio.h>
#include <stdlib.h>
#include <omp.h> const int thread = ; int main(int argc, char* argv[])
{
int i, threadReal, a[thread];
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread; #pragma omp parallel for num_threads(threadReal)
for (i = ; i < threadReal; i++)// 注意,把下面的 a[i] = i 写到括号里来会报错 “OpenMP“for”语句中的增量格式不正确”
a[i] = i; for (i = ; i < thread; i++)
printf("a[%2d] = %2d\n", i, a[i]);
getchar();
return ;
}

● 输出结果

a[ ] =
a[ ] =
a[ ] =
a[ ] =
a[ ] =
a[ ] =
a[ ] =
a[ ] =

▶ 使用私有变量估计 π 的值

 #include <stdio.h>
#include <stdlib.h>
#include <omp.h> const int thread = , count = ; int main0(int argc, char* argv[])// 一般方法,使用局部变量
{
int i, threadReal;
double sum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
sum = 0.0; #pragma omp parallel for num_threads(threadReal) reduction(+ : sum)
for (i = ; i < count; i++)
{
double sign = (i % ? -1.0 : 1.0);
sum += sign / ( * i + );
} printf("π = %.10f\n", sum * );
getchar();
return ;
} int main1(int argc, char* argv[])// 将已经声明了的 sign 作为私有变量
{
int i, threadReal;
double sign, sum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
sum = 0.0; #pragma omp parallel for num_threads(threadReal) reduction(+ : sum) private(sign)
for (i = ; i < count; i++)
{
sign = (i % ? -1.0 : 1.0);
sum += sign / ( * i + );
} printf("π = %.10f\n", sum * );
getchar();
return ;
} int main2(int argc, char* argv[])// 使用 default(none) 子句,然后明确规定每个变量的作用域
{
int i, threadReal;
double sign, sum;
if (argc > && *argv[] > ''&& *argv[] < '')
threadReal = atoi(argv[]);
else
threadReal = thread;
sum = 0.0; #pragma omp parallel for num_threads(threadReal) reduction(+ : sum) default(none) private(i, sign) shared(count)// 多个变量用逗号隔开
for (i = ; i < count; i++)
{
sign = (i % ? -1.0 : 1.0);
sum += sign / ( * i + );
} printf("π = %.10f\n", sum * );
getchar();
return ;
}

● 输出结果

π = 3.1415826536

OpenMP 简单的规约的更多相关文章

  1. 基于GCC的openMP学习与测试(2)

    一.openMP简单测试 1.简单测试(1) #include<omp.h> #include<time.h> #include<iostream> using n ...

  2. 基于GCC的openMP学习与测试

    (一).openMP简述 Open Multiprocessing (OpenMP) 框架是一种功能极为强大的规范,可以帮助您利用 C.C++ 和 Fortran 应用程序中的多个核心带来的好处,是基 ...

  3. CUDA01 - 硬件架构、warp调度、指令流水线和cuda并发流

    这一部分打算从头记录一下CUDA的编程方法和一些物理架构上的特点:从硬件入手,写一下包括线程束的划分.流水线的调度等等微结构的问题,以及这些物理设备是如何与软件对应的.下一部分会写一下cuda中的几种 ...

  4. 应用OpenMP的一个简单的设计模式

    小喵的唠叨话:最近很久没写博客了,一是因为之前写的LSoftmax后馈一直没有成功,所以在等作者的源码.二是最近没什么想写的东西.前两天,在预处理图片的时候,发现处理200w张图片,跑了一晚上也才处理 ...

  5. OpenMP的简单使用教程

    转自:http://binglispace.com/2015/01/09/openmp-intro/ OpenMP的简单使用教程 今天有幸参加了一个XSEDE OpenMP的workshop讲座,真是 ...

  6. 并行编程OpenMP基础及简单示例

    OpenMP基本概念 OpenMP是一种用于共享内存并行系统的多线程程序设计方案,支持的编程语言包括C.C++和Fortran.OpenMP提供了对并行算法的高层抽象描述,特别适合在多核CPU机器上的 ...

  7. VS2010+OpenMP的简单使用

    OpenMP是把程序中的循环操作分给电脑的各个CPU处理器并行进行.比如说我要循环运行100次,我的电脑有两个处理器,那OpenMP就会平均分给两个处理器并行运行,每个处理器运行50次.使用方法 1. ...

  8. 基于OpenMP的C++并行编程简单示例

    示例要求:在整数A和B之间找到符合条件的值X,使f(X)=C. 示例代码(需要在VS中开启OpenMP支持): #include<iostream> #include<time.h& ...

  9. [OpenMP] 并行计算入门

    OpenMP并行计算入门 个人理解 OpenMP是一种通过共享内存并行系统的多处理器程序设计的编译处理方案,通过预编译指令告诉编译器哪些代码块需要被并行化,通过拷贝代码块实现并行程序.对于循环的并行化 ...

随机推荐

  1. python学习笔记(日志系统实现)

    博主今天在自己的接口自动化框架中添加了日志系统 基于python自带的logging库.包括日志主函数.生成日志文件: # -*- coding: utf-8 -*- # 日志系统 # 时间:2017 ...

  2. hdu1847sg函数

    刚开始因为没注意到f是从0开始的导致wa了几次,f遍历的时候从0到f[j]<=i 这个题只有一个子情况,求出sg值直接判断就好了 #include<map> #include< ...

  3. recv,recvfrom,send,sendto

    一般情况下:send(),recv()用于TCP,sendto()及recvfrom()用于UDP 但是send(),recv()也可以用于UDP,sendto()及recvfrom()也可以用于TC ...

  4. 【MVC】ASP.NET MVC 4项目模板的结构简介

    引言     在VS2012新建一个窗体验证的MVC 4项目后,可以看到微软已经帮我们做了很多了,项目里面该有的都有了,完全可以看成一个简单网站.作为开发,能理解里面文件结构和作用,也算是半只脚踏进M ...

  5. window 更新 nodejs

    一直号称js程序员,结果发现自己机器的node版本才到 4.x.赶紧升级下. 在window下可以直接去nodejs.org下载最新的稳定版装上就行.同时也可以通过 powershell 命令行更新. ...

  6. XMU 1246

    http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1246 求区间内素数个数,经典问题,区间长度10^6,数的取值最多能到10^12(此题范围稍小) 用 ...

  7. Zabbix proxy 3.2安装部署

    zabbix proxy 前提环境: CentOS 6 LNMP(php) 版本:Zabbix-3.2.3 proxy安装 yum install -y net-snmp \ net-snmp-dev ...

  8. DesignPattern(四)结构型模式(下)

    上篇链接  https://www.cnblogs.com/qixinbo/p/9023764.html 继续介绍最后三种结构型模式 外观模式 外观模式,也称作 ”门面“模式,在系统中,客户端经常需要 ...

  9. TypeScript学习笔记(二) - 基本类型

    本篇将简单介绍TypeScript的几种基本类型. TypeScript基本类型有如下几种: Boolean Number String Array Tuple Enum Any 另外还有void类型 ...

  10. CH1807 Necklace

    题意 背景 有一天,袁☆同学绵了一条价值连城宝石项链,但是,一个严重的问题是,他竟然忘记了项链的主人是谁!在得知此事后,很多人向☆同学发来了很多邮件,都说项链是自己的,要求他归还(显然其中最多只有一个 ...