摘要: 使用动态规划法求解0/1背包问题。

难度: 初级

0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握。

值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么 背包的值、重量就直接存入二个数组里;如果用对象模型,则要对背包以及背包问题进行对象建模。思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些。有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用其它的模型和视角,或许可以得到更好的解法。

背包建模:

package algorithm.dynamicplan;
public class Knapsack { /** 背包重量 */
private int weight; /** 背包物品价值 */
private int value;
/***
* 构造器
*/
public Knapsack(int weight, int value) {
this.value = value;
this.weight = weight;
}
public int getWeight() {
return weight;
} public int getValue() {
return value;
} public String toString() {
return "[weight: " + weight + " " + "value: " + value + "]";
}
}

  背包问题求解:

/**
* 求解背包问题:
* 给定 n 个背包,其重量分别为 w1,w2,……,wn, 价值分别为 v1,v2,……,vn
* 要放入总承重为 totalWeight 的箱子中,
* 求可放入箱子的背包价值总和的最大值。
*
* NOTE: 使用动态规划法求解 背包问题
* 设 前 n 个背包,总承重为 j 的最优值为 v[n,j], 最优解背包组成为 b[n];
* 求解最优值:
* 1. 若 j < wn, 则 : v[n,j] = v[n-1,j];
* 2. 若 j >= wn, 则:v[n,j] = max{v[n-1,j], vn + v[n-1,j-wn]}。
*
* 求解最优背包组成:
* 1. 若 v[n,j] > v[n-1,j] 则 背包 n 被选择放入 b[n],
* 2. 接着求解前 n-1 个背包放入 j-wn 的总承重中,
* 于是应当判断 v[n-1, j-wn] VS v[n-2,j-wn], 决定 背包 n-1 是否被选择。
* 3. 依次逆推,直至总承重为零。
*
* 重点: 掌握使用动态规划法求解问题的分析方法和实现思想。
* 分析方法: 问题实例 P(n) 的最优解S(n) 蕴含 问题实例 P(n-1) 的最优解S(n-1);
* 在S(n-1)的基础上构造 S(n)
* 实现思想: 自底向上的迭代求解 和 基于记忆功能的自顶向下递归
*/
package algorithm.dynamicplan;
import java.util.ArrayList;
public class KnapsackProblem { /** 指定背包 */
private Knapsack[] bags; /** 总承重 */
private int totalWeight; /** 给定背包数量 */
private int n; /** 前 n 个背包,总承重为 totalWeight 的最优值矩阵 */
private int[][] bestValues; /** 前 n 个背包,总承重为 totalWeight 的最优值 */
private int bestValue; /** 前 n 个背包,总承重为 totalWeight 的最优解的物品组成 */
private ArrayList<Knapsack> bestSolution; public KnapsackProblem(Knapsack[] bags, int totalWeight) {
this.bags = bags;
this.totalWeight = totalWeight;
this.n = bags.length;
if (bestValues == null) {
bestValues = new int[n+1][totalWeight+1];
}
} /**
* 求解前 n 个背包、给定总承重为 totalWeight 下的背包问题
*
*/
public void solve() { System.out.println("给定背包:");
for(Knapsack b: bags) {
System.out.println(b);
}
System.out.println("给定总承重: " + totalWeight); // 求解最优值
for (int j = 0; j <= totalWeight; j++) {
for (int i = 0; i <= n; i++) { if (i == 0 || j == 0) {
bestValues[i][j] = 0;
}
else
{
// 如果第 i 个背包重量大于总承重,则最优解存在于前 i-1 个背包中,
// 注意:第 i 个背包是 bags[i-1]
if (j < bags[i-1].getWeight()) {
bestValues[i][j] = bestValues[i-1][j];
}
else
{
// 如果第 i 个背包不大于总承重,则最优解要么是包含第 i 个背包的最优解,
// 要么是不包含第 i 个背包的最优解, 取两者最大值,这里采用了分类讨论法
// 第 i 个背包的重量 iweight 和价值 ivalue
int iweight = bags[i-1].getWeight();
int ivalue = bags[i-1].getValue();
bestValues[i][j] =
Math.max(bestValues[i-1][j], ivalue + bestValues[i-1][j-iweight]);
} // else
} //else
} //for
} //for // 求解背包组成
if (bestSolution == null) {
bestSolution = new ArrayList<Knapsack>();
}
int tempWeight = totalWeight;
for (int i=n; i >= 1; i--) {
if (bestValues[i][tempWeight] > bestValues[i-1][tempWeight]) {
bestSolution.add(bags[i-1]); // bags[i-1] 表示第 i 个背包
tempWeight -= bags[i-1].getWeight();
}
if (tempWeight == 0) { break; }
}
bestValue = bestValues[n][totalWeight];
} /**
* 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值
* 调用条件: 必须先调用 solve 方法
*
*/
public int getBestValue() {
return bestValue;
} /**
* 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵
* 调用条件: 必须先调用 solve 方法
*
*/
public int[][] getBestValues() { return bestValues;
} /**
* 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵
* 调用条件: 必须先调用 solve 方法
*
*/
public ArrayList<Knapsack> getBestSolution() {
return bestSolution;
} }

  背包问题测试:

package algorithm.dynamicplan;

public class KnapsackTest {

    public static void main(String[] args) {

        Knapsack[] bags = new Knapsack[] {
new Knapsack(2,13), new Knapsack(1,10),
new Knapsack(3,24), new Knapsack(2,15),
new Knapsack(4,28), new Knapsack(5,33),
new Knapsack(3,20), new Knapsack(1, 8)
};
int totalWeight = 12;
KnapsackProblem kp = new KnapsackProblem(bags, totalWeight); kp.solve();
System.out.println(" -------- 该背包问题实例的解: --------- ");
System.out.println("最优值:" + kp.getBestValue());
System.out.println("最优解【选取的背包】: ");
System.out.println(kp.getBestSolution());
System.out.println("最优值矩阵:");
int[][] bestValues = kp.getBestValues();
for (int i=0; i < bestValues.length; i++) {
for (int j=0; j < bestValues[i].length; j++) {
System.out.printf("%-5d", bestValues[i][j]);
}
System.out.println();
}
}
}

  

动态规划法总结:

1. 动态规划法用于求解非最优化问题:

当问题实例P(n)的解由子问题实例的解构成时,比如 P(n) = P(n-1) + P(n-2) [斐波那契数列] ,而 P(n-1) 和 P(n-2)可能包含重合的子问题,可以使用动态规划法,通过自底向上的迭代,求解较小子问题实例的解,并作为求解较大子问题实例的解的基础。关键思想是: 避免对子问题重复求解。

比如: 求斐波那契数 F(5):

F(5)  = F(4) + F(3);

子问题: F(4) = F(3) + F(2) ;

F(3) = F(2) + F(1);

F(2) = F(1) + F(0)

F(2) = F(1) + F(0);

子问题: F(3) = F(2) + F(1)

F(2) = F(1) + F(0)

由上面的计算过程可知,如果单纯使用递归式,则子问题 F(2) 被重复计算了2次;当问题实例较大时,这些重复的子问题求解就会耗费大量不必要的时间。 若使用动态规划法,将 F(2) 的值存储起来,当后续计算需要的时候,直接取出来, 就可以节省不少时间。

另一个比较典型的例子是: 求解二项式系数  C(n, k) = C(n-1, k) + C(n-1, k-1)

2. 动态规划法求解最优化问题:

当问题实例P(n) 的最优解 可以从 问题实例 P(n-1) 的最优解 构造出来时,可以采用动态规划法,一步步地构造最优解。

关键是掌握动态规划法求解问题时的分析方法,如何从问题导出 解的递推式。 实际上,当导出背包问题的递归式后,后来的工作就简单多了,如何分析背包问题,导出其最优解的递推式,我觉得,这才是最关键的地方!问题分析很重要!

Java实现动态规划法求解0/1背包问题的更多相关文章

  1. 蓝桥杯 0/1背包问题 (java)

      今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...

  2. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  3. 20145208 《Java程序设计》第0周学习总结

    20145208 <Java程序设计>第0周学习总结 阅读心得 读了老师推荐的几个文章,虽然第四个文章"为什么一定要自学"报告资源不存在而无法阅读,其他的三篇文章都言之 ...

  4. Java I/O 从0到1 - 第Ⅰ滴血 File

    前言 File 类的介绍主要会依据<Java 编程思想>以及官网API .相信大家在日常工作中,肯定会遇到文件流的读取等操作,但是在搜索过程中,并没有找到一个介绍的很简洁明了的文章.因此, ...

  5. 《Java I/O 从0到1》 - 第Ⅱ滴血 “流”

    前言 <Java I/O 从0到1>系列上一章节,介绍了File 类,这一章节介绍的是IO的核心 输入输出.I/O类库常使用流这个抽象概念.代表任何有能力产出数据的数据源对象或者是有能力接 ...

  6. Windows Intellij环境下Gradle的 “Could not determine Java version from ‘9.0.1’”的解决方式

    当我导入Gradle项目初试Java spring的时候,遇到下面报错: Gradle complete project refresh failed Error:Could not determin ...

  7. hadoop 遇到java.net.ConnectException: to 0.0.0.0:10020 failed on connection

      hadoop 遇到java.net.ConnectException: to 0.0.0.0:10020 failed on connection   这个问题一般是在hadoop2.x版本里会出 ...

  8. 20145328 《Java程序设计》第0周学习总结

    20145328 <Java程序设计>第0周学习总结 阅读心得 从总体上来说,这几篇文章都是围绕着软件工程专业的一些现象来进行描述的,但深入了解之后就可以发现,无论是软件工程专业还是我们现 ...

  9. 《Java I/O 从0到1》 - 第Ⅰ滴血 File

    前言 File 类的介绍主要会依据<Java 编程思想>以及官网API .相信大家在日常工作中,肯定会遇到文件流的读取等操作,但是在搜索过程中,并没有找到一个介绍的很简洁明了的文章.因此, ...

随机推荐

  1. nginx mac 下启动 停止 重启,查看安装位置

    Nginx的启动.停止与重启   启动 启动代码格式:nginx安装目录地址 -c nginx配置文件地址 例如: [root@LinuxServer sbin]# /usr/local/nginx/ ...

  2. Java三方---->pdf框架之IText的使用

    在企业的信息系统中,报表处理一直占比较重要的作用t.通过在服务器端使用Jsp或JavaBean生成PDF报表,客户端采用超链接显示或下载得到生成的报表,这样就很好的解决了B/S系统的报表处理问题.今天 ...

  3. JS-随机div颜色

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. LeetCode——Single Number III

    Description: Given an array of numbers nums, in which exactly two elements appear only once and all ...

  5. js部署中如何提高页面加载速度

    1.合并js文件,减少http请求数量. 2.对js文件进行压缩 3.以gzip的形式提供js 4.使js文件可缓存 5.使用CDN

  6. Vue如何引入远程JS文件

    直接在dom上操作: export default { mounted() { const s = document.createElement('script'); s.type = 'text/j ...

  7. linux 中 ll 命令显示 的大小 是什么单位的啊?

    ll显示的是字节,可以使用-h参数来提高文件大小的可读性,另外ll不是命令,是ls -l的别名 ls -al   是以字节单位显示文件或者文件夹大小: 字节b,千字节kb, 1G=1024M=1024 ...

  8. android异常:Can not perform this action after onSaveInstanc

    extends:http://zhiweiofli.iteye.com/blog/1539467 本人某个android项目开发阶段一直运行良好,直到上线前夕,在某款跑着android 4.03系统的 ...

  9. Unity3D笔记七 GUILayout

    一.说到GUILayout就要提到GUI,二者的区别是什么 GUILayout是游戏界面的布局.GUI(界面)和GUILayout(界面布局)功能上面是相似的从命名中就可以看到这两个东西非常相像,但是 ...

  10. Linux系列-Xshell连接本地VMware安装的Linux虚拟机

    一.安装VMwareWorkstation并安装RedHat虚拟机,这里安装步骤省略,网络的资料很多,大侠们不如百度或者谷歌一下,大把的资料. 二.打开本地电脑的“网络连接”,你会发现多出了2个网络适 ...