Java实现动态规划法求解0/1背包问题
摘要: 使用动态规划法求解0/1背包问题。
难度: 初级
0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握。
值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么 背包的值、重量就直接存入二个数组里;如果用对象模型,则要对背包以及背包问题进行对象建模。思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些。有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用其它的模型和视角,或许可以得到更好的解法。
背包建模:
package algorithm.dynamicplan;
public class Knapsack { /** 背包重量 */
private int weight; /** 背包物品价值 */
private int value;
/***
* 构造器
*/
public Knapsack(int weight, int value) {
this.value = value;
this.weight = weight;
}
public int getWeight() {
return weight;
} public int getValue() {
return value;
} public String toString() {
return "[weight: " + weight + " " + "value: " + value + "]";
}
}
背包问题求解:
/**
* 求解背包问题:
* 给定 n 个背包,其重量分别为 w1,w2,……,wn, 价值分别为 v1,v2,……,vn
* 要放入总承重为 totalWeight 的箱子中,
* 求可放入箱子的背包价值总和的最大值。
*
* NOTE: 使用动态规划法求解 背包问题
* 设 前 n 个背包,总承重为 j 的最优值为 v[n,j], 最优解背包组成为 b[n];
* 求解最优值:
* 1. 若 j < wn, 则 : v[n,j] = v[n-1,j];
* 2. 若 j >= wn, 则:v[n,j] = max{v[n-1,j], vn + v[n-1,j-wn]}。
*
* 求解最优背包组成:
* 1. 若 v[n,j] > v[n-1,j] 则 背包 n 被选择放入 b[n],
* 2. 接着求解前 n-1 个背包放入 j-wn 的总承重中,
* 于是应当判断 v[n-1, j-wn] VS v[n-2,j-wn], 决定 背包 n-1 是否被选择。
* 3. 依次逆推,直至总承重为零。
*
* 重点: 掌握使用动态规划法求解问题的分析方法和实现思想。
* 分析方法: 问题实例 P(n) 的最优解S(n) 蕴含 问题实例 P(n-1) 的最优解S(n-1);
* 在S(n-1)的基础上构造 S(n)
* 实现思想: 自底向上的迭代求解 和 基于记忆功能的自顶向下递归
*/
package algorithm.dynamicplan;
import java.util.ArrayList;
public class KnapsackProblem { /** 指定背包 */
private Knapsack[] bags; /** 总承重 */
private int totalWeight; /** 给定背包数量 */
private int n; /** 前 n 个背包,总承重为 totalWeight 的最优值矩阵 */
private int[][] bestValues; /** 前 n 个背包,总承重为 totalWeight 的最优值 */
private int bestValue; /** 前 n 个背包,总承重为 totalWeight 的最优解的物品组成 */
private ArrayList<Knapsack> bestSolution; public KnapsackProblem(Knapsack[] bags, int totalWeight) {
this.bags = bags;
this.totalWeight = totalWeight;
this.n = bags.length;
if (bestValues == null) {
bestValues = new int[n+1][totalWeight+1];
}
} /**
* 求解前 n 个背包、给定总承重为 totalWeight 下的背包问题
*
*/
public void solve() { System.out.println("给定背包:");
for(Knapsack b: bags) {
System.out.println(b);
}
System.out.println("给定总承重: " + totalWeight); // 求解最优值
for (int j = 0; j <= totalWeight; j++) {
for (int i = 0; i <= n; i++) { if (i == 0 || j == 0) {
bestValues[i][j] = 0;
}
else
{
// 如果第 i 个背包重量大于总承重,则最优解存在于前 i-1 个背包中,
// 注意:第 i 个背包是 bags[i-1]
if (j < bags[i-1].getWeight()) {
bestValues[i][j] = bestValues[i-1][j];
}
else
{
// 如果第 i 个背包不大于总承重,则最优解要么是包含第 i 个背包的最优解,
// 要么是不包含第 i 个背包的最优解, 取两者最大值,这里采用了分类讨论法
// 第 i 个背包的重量 iweight 和价值 ivalue
int iweight = bags[i-1].getWeight();
int ivalue = bags[i-1].getValue();
bestValues[i][j] =
Math.max(bestValues[i-1][j], ivalue + bestValues[i-1][j-iweight]);
} // else
} //else
} //for
} //for // 求解背包组成
if (bestSolution == null) {
bestSolution = new ArrayList<Knapsack>();
}
int tempWeight = totalWeight;
for (int i=n; i >= 1; i--) {
if (bestValues[i][tempWeight] > bestValues[i-1][tempWeight]) {
bestSolution.add(bags[i-1]); // bags[i-1] 表示第 i 个背包
tempWeight -= bags[i-1].getWeight();
}
if (tempWeight == 0) { break; }
}
bestValue = bestValues[n][totalWeight];
} /**
* 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值
* 调用条件: 必须先调用 solve 方法
*
*/
public int getBestValue() {
return bestValue;
} /**
* 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵
* 调用条件: 必须先调用 solve 方法
*
*/
public int[][] getBestValues() { return bestValues;
} /**
* 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵
* 调用条件: 必须先调用 solve 方法
*
*/
public ArrayList<Knapsack> getBestSolution() {
return bestSolution;
} }
背包问题测试:
package algorithm.dynamicplan;
public class KnapsackTest {
public static void main(String[] args) {
Knapsack[] bags = new Knapsack[] {
new Knapsack(2,13), new Knapsack(1,10),
new Knapsack(3,24), new Knapsack(2,15),
new Knapsack(4,28), new Knapsack(5,33),
new Knapsack(3,20), new Knapsack(1, 8)
};
int totalWeight = 12;
KnapsackProblem kp = new KnapsackProblem(bags, totalWeight);
kp.solve();
System.out.println(" -------- 该背包问题实例的解: --------- ");
System.out.println("最优值:" + kp.getBestValue());
System.out.println("最优解【选取的背包】: ");
System.out.println(kp.getBestSolution());
System.out.println("最优值矩阵:");
int[][] bestValues = kp.getBestValues();
for (int i=0; i < bestValues.length; i++) {
for (int j=0; j < bestValues[i].length; j++) {
System.out.printf("%-5d", bestValues[i][j]);
}
System.out.println();
}
}
}
动态规划法总结:
1. 动态规划法用于求解非最优化问题:
当问题实例P(n)的解由子问题实例的解构成时,比如 P(n) = P(n-1) + P(n-2) [斐波那契数列] ,而 P(n-1) 和 P(n-2)可能包含重合的子问题,可以使用动态规划法,通过自底向上的迭代,求解较小子问题实例的解,并作为求解较大子问题实例的解的基础。关键思想是: 避免对子问题重复求解。
比如: 求斐波那契数 F(5):
F(5) = F(4) + F(3);
子问题: F(4) = F(3) + F(2) ;
F(3) = F(2) + F(1);
F(2) = F(1) + F(0)
F(2) = F(1) + F(0);
子问题: F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
由上面的计算过程可知,如果单纯使用递归式,则子问题 F(2) 被重复计算了2次;当问题实例较大时,这些重复的子问题求解就会耗费大量不必要的时间。 若使用动态规划法,将 F(2) 的值存储起来,当后续计算需要的时候,直接取出来, 就可以节省不少时间。
另一个比较典型的例子是: 求解二项式系数 C(n, k) = C(n-1, k) + C(n-1, k-1)
2. 动态规划法求解最优化问题:
当问题实例P(n) 的最优解 可以从 问题实例 P(n-1) 的最优解 构造出来时,可以采用动态规划法,一步步地构造最优解。
关键是掌握动态规划法求解问题时的分析方法,如何从问题导出 解的递推式。 实际上,当导出背包问题的递归式后,后来的工作就简单多了,如何分析背包问题,导出其最优解的递推式,我觉得,这才是最关键的地方!问题分析很重要!
Java实现动态规划法求解0/1背包问题的更多相关文章
- 蓝桥杯 0/1背包问题 (java)
今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...
- 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列
0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...
- 20145208 《Java程序设计》第0周学习总结
20145208 <Java程序设计>第0周学习总结 阅读心得 读了老师推荐的几个文章,虽然第四个文章"为什么一定要自学"报告资源不存在而无法阅读,其他的三篇文章都言之 ...
- Java I/O 从0到1 - 第Ⅰ滴血 File
前言 File 类的介绍主要会依据<Java 编程思想>以及官网API .相信大家在日常工作中,肯定会遇到文件流的读取等操作,但是在搜索过程中,并没有找到一个介绍的很简洁明了的文章.因此, ...
- 《Java I/O 从0到1》 - 第Ⅱ滴血 “流”
前言 <Java I/O 从0到1>系列上一章节,介绍了File 类,这一章节介绍的是IO的核心 输入输出.I/O类库常使用流这个抽象概念.代表任何有能力产出数据的数据源对象或者是有能力接 ...
- Windows Intellij环境下Gradle的 “Could not determine Java version from ‘9.0.1’”的解决方式
当我导入Gradle项目初试Java spring的时候,遇到下面报错: Gradle complete project refresh failed Error:Could not determin ...
- hadoop 遇到java.net.ConnectException: to 0.0.0.0:10020 failed on connection
hadoop 遇到java.net.ConnectException: to 0.0.0.0:10020 failed on connection 这个问题一般是在hadoop2.x版本里会出 ...
- 20145328 《Java程序设计》第0周学习总结
20145328 <Java程序设计>第0周学习总结 阅读心得 从总体上来说,这几篇文章都是围绕着软件工程专业的一些现象来进行描述的,但深入了解之后就可以发现,无论是软件工程专业还是我们现 ...
- 《Java I/O 从0到1》 - 第Ⅰ滴血 File
前言 File 类的介绍主要会依据<Java 编程思想>以及官网API .相信大家在日常工作中,肯定会遇到文件流的读取等操作,但是在搜索过程中,并没有找到一个介绍的很简洁明了的文章.因此, ...
随机推荐
- 转的:burp suite小例子
Web安全测试时经常会遇到一些蹩脚的注射点,而因各种原因利用注射又无法获取网站管理账号或拥有网站管理权限却迟迟不能upload一个shell的时候,可能会权衡一下web权限与数据库信息,哪个是我们所需 ...
- 利用html实现类似于word自动生成的目录的效果
在word中的自动生成目录当中,我们会看到是这样的目录结构: 嗯,自动生成固然是简单,但是在html当中,却没有一个合适的标签来去做.今天后台导出PDF的时候告诉我,他需要用html做一个这样的结构, ...
- PyQt4将窗口放在屏幕中间
以下脚本显示了将窗口放在屏幕中间位置的方法. #!/usr/bin/python # -*- coding:utf-8 -*- import sys from PyQt4 import QtGui c ...
- mongodb3.2系统性学习——3、update()操作
mongodb 包含众多的原子性操作: 实例: //连接数据库 dbService = connect("localhost:27017"); //选择插入集合 db = dbS ...
- 【Java nio】Blocking nio2
package com.slp.nio; import org.junit.Test; import java.io.File; import java.io.IOException; import ...
- 1.执行环境判断 window 或 self
window or self ? 在 underscore 的判断所处环境的代码中,似乎我们没有看到 window 对象的引用,其实,在浏览器环境下,self 保存的就是当前 window 对象的引用 ...
- java类的成员初始化顺序和初始化块知识
java类的成员初始化顺序和初始化块知识 转自:http://blog.csdn.net/lgfeng218/article/details/7606735 属性.方法.构造方法和自由块都是类中的成员 ...
- jvm的内存模型
转自:https://www.cnblogs.com/dingyingsi/p/3760447.html 我们知道,计算机CPU和内存的交互是最频繁的,内存是我们的高速缓存区,用户磁盘和CPU的交互, ...
- centos6.5安装sendmail
1.下载安装sendEmail(下载绿色版,解压可直接使用) wget http://caspian.dotconf.net/menu/Software/SendEmail/sendEmail-v1. ...
- onethink插件控制器如何访问?
具体路由分析就不说啦!就是那样.这里我只是方便访问来做一个记录,方便复制粘贴访问: 例如:新增一个Baoming的插件: 那么如何,访问这个控制里面方法呢? 第一种情况:这个控制器使用的是Admin模 ...