mysql索引之哈希索引
哈希算法
哈希算法时间复杂度为O(1),且不只存在于索引中,每个数据库应用中都存在该数据结构。
哈希表
哈希表也为散列表,又直接寻址改进而来。在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[0...m-1]的槽位上。

上图中哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,如下图所示:

InnoDB存储引擎中的哈希算法
InnoDB中采用除法散列函数,冲突机制采用链接法。
BTree索引和哈希索引的区别
Hash索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以Hash索引的查询效率要远高于B-Tree索引。
可能很多人又有疑问了,既然Hash索引的效率要比B-Tree高很多,为什么大家不都用Hash索引而还要使用B-Tree索引呢?任何事物都是有两面性的,Hash索引也一样,虽然Hash索引效率高,但是Hash索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些:
- Hash索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。哈希索引只支持等值比较查询,包括=、 IN 、<=> (注意<>和<=>是不同的操作)。 也不支持任何范围查询,例如WHERE price > 100。
由于Hash索引比较的是进行Hash运算之后的Hash值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的Hash算法处理之后的Hash值的大小关系,并不能保证和Hash运算前完全一样。 - Hash索引无法被用来避免数据的排序操作。
由于Hash索引中存放的是经过Hash计算之后的Hash值,而且Hash值的大小关系并不一定和Hash运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算; - Hash索引不能利用部分索引键查询。
对于组合索引,Hash索引在计算Hash值的时候是组合索引键合并后再一起计算Hash值,而不是单独计算Hash值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash索引也无法被利用。 - Hash索引在任何时候都不能避免表扫描。
前面已经知道,Hash索引是将索引键通过Hash运算之后,将 Hash运算结果的Hash值和所对应的行指针信息存放于一个Hash表中,由于不同索引键存在相同Hash值,所以即使取满足某个Hash键值的数据的记录条数,也无法从Hash索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。 - Hash索引遇到大量Hash值相等的情况后性能并不一定就会比BTree索引高。
对于选择性比较低的索引键,如果创建Hash索引,那么将会存在大量记录指针信息存于同一个Hash值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。
mysql索引之哈希索引的更多相关文章
- MySQL B+树索引和哈希索引的区别
导读 在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议. 二者区别 备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BT ...
- MySQL B+树索引和哈希索引的区别(转 JD二面)
导读 在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议. 二者区别 备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTRE ...
- mysql索引之一:索引基础(B-Tree索引、哈希索引、聚簇索引、全文(Full-text)索引区别)(唯一索引、最左前缀索引、前缀索引、多列索引)
没有索引时mysql是如何查询到数据的 索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储10 ...
- B+树索引和哈希索引的区别[转]
导读 在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议. 二者区别 备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTRE ...
- B+树索引和哈希索引的区别——我在想全文搜索引擎为啥不用hash索引而非得使用B+呢?
哈希文件也称为散列文件,是利用哈希存储方式组织的文件,亦称为直接存取文件.它类似于哈希表,即根据文件中关键字的特点,设计一个哈希函数和处理冲突的方法,将记录哈希到存储设备上. 在哈希文件中,是使用一个 ...
- MySQL技巧--伪哈希索引
哈希索引 哈希索引就是通过一个哈希函数计算出某个key的hash值,并以这个hash值去找到目标数据.例如:对于数据库的一行数据,对其主键进行hash运算,得到一个地址,这个地址指向这行记录的存储地址 ...
- MySQL中自适应哈希索引
自适应哈希索引采用之前讨论的哈希表的方式实现,不同的是,这仅是数据库自身创建并使用的,DBA本身并不能对其进行干预.自适应哈希索引近哈希函数映射到一个哈希表中,因此对于字典类型的查找非常快速,如SEL ...
- B+树索引和哈希索引的明显区别是:
如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值:当然了,这个前提是,键值都是唯一的.如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到 ...
- SQL Server2014 哈希索引原理
SQL Server2014 哈希索引原理 翻译自:http://www.sqlservercentral.com/blogs/sql-and-sql-only/2015/09/08/hekaton- ...
随机推荐
- VMware 12安装虚拟机Mac OS X 10.10(VMware12安装/共享文件夹)
推荐电脑配置 1:Inter I5及以上 (A卡请自行百度大神解决方案) 必须开启CPU虚拟化:开机进入BIOS--->Intel Virtualization Technology---> ...
- BSTR与char*、cstring、CComBSTR的转换
// BSTR_Convert.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <comutil.h> // ...
- MQTT协议笔记之连接和心跳
前言 本篇会把连接(CONNECT).心跳(PINGREQ/PINGRESP).确认(CONNACK).断开连接(DISCONNECT)和在一起. CONNECT 像前面所说,MQTT有关字符串部分采 ...
- MyBatis——Mapper XML 文件
Mapper XML 文件 MyBatis 的真正强大在于它的映射语句,也是它的魔力所在.由于它的异常强大,映射器的 XML 文件就显得相对简单.如果拿它跟具有相同功能的 JDBC 代码进行对比,你会 ...
- Codeforces Round #375 (Div. 2)E. One-Way Reform
题目链接:传送门 题目大意:一副无向图,要求你给边定向(变为有向图),使出度等于入度的点最多,输出有多少 个点,并且输出定向后的边(前为起点,后为终点) 题目思路:欧拉路 我们这样考虑,先考虑无向图的 ...
- hdu4028 The time of a day[map优化dp]
The time of a day Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others ...
- Python 导入与注册
背景 最近一直学习写一个POC扫描框架,但是不知道如何下手,正巧因为一些需要有朋友在研究POCSuite的实现原理,顺面蹭一些知识点,补一补Python基础的不足,为以后编写POC框架打地基. 导入 ...
- Bettercap的安装和使用嗅探WIFI
一.首先安装bettercap 我这里的环境是ubuntu 16.04 apt-get install build-essential ruby-dev libpcap-dev git ruby ge ...
- 学习c++的50条忠告(转自C++百度贴吧)
1.把C++当成一门新的语言学习(和C没啥关系!真的.): 2.看<Thinking In C++>,不要看<C++变成死相>: 3.看<The C++ Programm ...
- 使用docx4j编程式地创建复杂的Word(.docx)文档
原文链接:Create complex Word (.docx) documents programatically with docx4j 原文作者:jos.dirksen 发表日期:2012年2月 ...