[NOIp2009] $Hankson$ 的趣味题
类型:数论
传送门:>Here<
题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数
解题思路
显然$a_1 | x, x|b_1$,因此设$x = a_1 * p, \ b_1 = x*q$。则$b_1 = a_1*p*q$
设$p*q=b_1/a_1=s$
$∵gcd(x,a_0)=a_1 \ ∴gcd(x/a_1,a_0/a_1)=1$
$∵lcm(x,b_0)=b_1 \ ∴gcd(b_1/x,b_1/b_0)=1$
由于$x/a_1=p,b_1/x=q=s/p$
$∴ \left\{\begin{matrix} gcd(p,a_0/a_1)=1\\ gcd(s/p,b_1/b_0)=1\\ \end{matrix}\right. $
由此我们发现,只需要枚举$s$的因子$p$进行验证即可,复杂度$O(\sqrt{s} * N)$
Code
特判完全平方数
/*By DennyQi 2018.8.17*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#include <cmath>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x<<) + (x<<) + c - '', c = getchar();return x * w;
}
int n,m,a[],b[],p,s,T,lim,ans;
int gcd(int a, int b){
return !b ? a : gcd(b, a%b);
}
inline bool judge(int s, int p){
if(gcd(s/p, b[]/b[]) != ) return ;
if(gcd(p, a[]/a[]) != ) return ;
return ;
}
int main(){
T = r;
while(T--){
a[] = r, a[] = r;
b[] = r, b[] = r;
s = b[] / a[];
ans = ;
lim = floor(sqrt(s));
for(p = ; p <= lim; ++p){
if(s % p == ){
if(judge(s,p)) ++ans;
if(s/p == p) continue;
if(judge(s,s/p)) ++ans;
}
}
printf("%d\n", ans);
}
return ;
}
[NOIp2009] $Hankson$ 的趣味题的更多相关文章
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- NOIP2009 Hankson 的趣味题 : 数论
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...
- NOIP2009 Hankson的趣味题
题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
- luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)
一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...
- NOIP 2009 Hankson 的趣味题
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- CH3201 Hankson的趣味题
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...
- 算法训练 Hankson的趣味题
算法训练 Hankson的趣味题 时间限制:1.0s 内存限制:64.0MB 问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...
随机推荐
- [书籍]重温《Framework Design Guidelines》
1. 前言 最近重温了<Framework Design Guidelines>. <Framework Design Guidelines>中文名称为<.NET设计规范 ...
- 基于HTTP可供浏览器调用的本地打印程序
之前给公司做打印都是用ActiveX控件,只支持IE浏览器,最近需要支持谷歌,又不想去学谷歌插件编写,于是就用本地启动一个http服务器来供浏览器调用(写成windows服务更好),同事用了都说好(笑 ...
- Python监控服务器利器--psutil
Python监控服务器利器--psutil 服务器的监控通过安装一些常用的监控软件之外,有时也需要运行一些shell或Python脚本:shell下可以使用系统自带的ps/free/top/df等sh ...
- hibernate坑边闲话2
threw exception [Request processing failed; nested exception is org.springframework.orm.hibernate5.H ...
- POJ 2406 Power Strings(KMP)
Description Given two strings a and b we define a*b to be their concatenation. For example, if a = & ...
- python知识点及面试面试大集合
题目来源:武sir--一个很有意思的人,点击这儿跳转 一.基础篇 为什么学习Python? 通过什么途径学习的Python? Python和Java.PHP.C.C#.C++等其他语言的对比? 简述解 ...
- Telnet服务器和客户端请求处理
Telnet服务器和客户端请求处理 本文的控制台项目是根据SuperSocket官方Telnet示例代码进行调试的,官方示例代码:Telnet示例. 开始我的第一个Telnet控制台项目之旅: 创建控 ...
- 关于Fatal error: Paletter image not supported by webp 报错
报错提示 Fatal error: Paletter image not supported by webp 原因是由于图片被非法编辑过(相对PHP来说)造成, 有可能是某些编辑图片的软件的格式与PH ...
- 转《vue引入第三方js库》
一.绝对路径直接引入,全局可用 二.绝对路径直接引入,配置后,import 引入后再使用 三.webpack中配置 alias,import 引入后再使用 四.webpack 中配置 plugins, ...
- docker 操作镜像的基本操作
以安装mysql为例 1.拉取镜像 docker pull mysql 错误的启动 [root@localhost ~]# docker run --name mysql01 -d mysql 42f ...