【XSY2721】求和 杜教筛
题目描述
设\(n=\prod a_i^{p_i}\),那么定义\(f_d(n)=\prod{(-1)^{p_i}[p_i\leq d]}\)。特别的,\(f_1(n)=\mu(n)\)。
给你\(n,k\),求
\]
\(n\leq {10}^{10},k\leq 40\)
题解
先做一些简单的处理
ans&=\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^kf_d(\gcd(i,j))\\
&=\sum_{i=1}^n\sum_{d=1}^kf_d(i)(2(\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j))-1)
\end{align}
\]
后面\(\varphi\)用杜教筛可以在\(O(n^\frac{2}{3})\)内搞出来。
设\(\lambda(n)=f_\infty(n)=\prod{(-1)}^{p_i}\)
考虑容斥,有:
\]
F_d(n)&=\sum_{i=1}^nf_d(i)\\
&=\sum_{i=1}^n\lambda(i)\sum_{j^d|i}\mu(j)\\
&=\sum_{i=1}^n\mu(i)\sum_{j=1}^{\lfloor\frac{n}{i^{d+1}}\rfloor}\lambda(i^{d+1}j)\\
&=\sum_{i=1}^{\lfloor\sqrt[d+1]{n}\rfloor}\lambda^{d+1}(i)\mu(i)\Lambda(\lfloor\frac{n}{i^{d+1}}\rfloor)
\end{align}
\]
\(n\leq {10}^7\)的部分预处理,其他的每次枚举。这部分每次枚举是\(\sqrt{n}\)的。总的是\(O(n^\frac{2}{3})\)的。(和杜教筛的分析方法一样。)
\sum_{j|i}\lambda(j)&=[i是完全平方数]\\
\sum_{i=1}^n\sum_{j|i}\lambda(j)&=\sqrt{n}\\
\sqrt{n}=\sum_{i=1}^n\sum_{j}[j|i]\lambda(i)&=\sum_{\frac{i}{j}=1}^n\sum_{j=1}^{\lfloor\frac{n}{\frac{i}{j}}\rfloor}\lambda(j)
=\sum_{i=1}^n\Lambda(\lfloor\frac{n}{i}\rfloor)\\
\Lambda(n)&=\sqrt {n}-\sum_{i=2}^n\Lambda(\lfloor\frac{n}{i}\rfloor)
\end{align}
\]
后面\(\Lambda(n)\)用杜教筛可以在\(O(n^\frac{2}{3})\)内搞出来
反正总的是\(O(n^\frac{2}{3})\)的就对了。。。
时间复杂度:\(O(n^\frac{2}{3})\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int getsqrt(ll n)
{
int l=1,r=1000000;
while(l<r)
{
int mid=(l+r+1)>>1;
if((ll)mid*mid>n)
r=mid-1;
else
l=mid;
}
return l;
}
ll n;
ll _sqrt;
namespace hashset
{
int getnum(ll x)
{
return n/x;
}
}
using hashset::getnum;
int miu[10000010];
int phi[10000010];
int c[10000010];
int cs[10000010];
const int maxn=10000000;
int b[10000010];
int pri[1000010];
int cnt;
int d[10000010];
int e[10000010];
int f[10000010];
int k;
int vis[10000010];
int qp[10000010];
int qc[10000010];
void init()
{
c[1]=phi[1]=miu[1]=f[1]=e[1]=1;
d[1]=f[1]=0;
int i,j;
for(i=2;i<=maxn;i++)
{
if(!b[i])
{
miu[i]=-1;
phi[i]=i-1;
c[i]=-1;
pri[++cnt]=i;
d[i]=e[i]=1;
f[i]=1;
}
for(j=1;j<=cnt&&i*pri[j]<=maxn;j++)
{
b[i*pri[j]]=1;
c[i*pri[j]]=-c[i];
f[i*pri[j]]=f[i]+1;
if(i%pri[j]==0)
{
miu[i*pri[j]]=0;
phi[i*pri[j]]=phi[i]*pri[j];
d[i*pri[j]]=d[i]+1;
e[i*pri[j]]=max(d[i*pri[j]],e[i]);
break;
}
d[i*pri[j]]=1;
e[i*pri[j]]=e[i];
miu[i*pri[j]]=-miu[i];
phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(i=1;i<=maxn;i++)
{
if(e[i]>k)
f[i]=0;
else
f[i]=(f[i]&1?-1:1)*(k-e[i]+1);
f[i]+=f[i-1];
// miu[i]+=miu[i-1];
phi[i]+=phi[i-1];
cs[i]=cs[i-1]+c[i];
}
}
int getphi(ll n)
{
if(n<=maxn)
return phi[n];
int x=getnum(n);
if(vis[x]&1)
return qp[x];
vis[x]|=1;
ll i,j;
int s=n*(n+1)>>1;
for(i=2;i<=n;i=j+1)
{
j=n/(n/i);
s-=(j-i+1)*getphi(n/i);
}
qp[x]=s;
return s;
}
int getc(ll n)
{
if(n<=maxn)
return cs[n];
int x=getnum(n);
if(vis[x]&2)
return qc[x];
vis[x]|=2;
int s=getsqrt(n);
ll i,j;
for(i=2;i<=n;i=j+1)
{
j=n/(n/i);
s-=(j-i+1)*getc(n/i);
}
qc[x]=s;
return s;
}
ll pw[1000010];
int pw2[1000010];
int pw3[1000010];
int getfd(ll n)
{
if(n<=maxn)
return f[n];
int i,j;
for(i=1;(ll)i*i<=n;i++)
{
pw[i]=i;
pw2[i]=pw3[i]=c[i];
}
int m=i-1;
int s=0;
for(j=1;j<=k;j++)
{
for(i=1;i<=m;i++)
{
pw[i]*=i;
if(pw[i]>n)
break;
pw2[i]*=pw3[i];
s+=miu[i]*pw2[i]*getc(n/pw[i]);
}
}
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
scanf("%lld%d",&n,&k);
_sqrt=getsqrt(n);
init();
int s=0;
ll i,j;
int now,last=0;
int ans=0;
for(i=1;i<=n;i=j+1)
{
j=n/(n/i);
now=getfd(j);
ans+=(now-last)*(2*getphi(n/i)-1);
last=now;
}
ans&=(1<<30)-1;
printf("%d\n",ans);
return 0;
}
【XSY2721】求和 杜教筛的更多相关文章
- BZOJ4805: 欧拉函数求和(杜教筛)
4805: 欧拉函数求和 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 614 Solved: 342[Submit][Status][Discus ...
- BZOJ 4805: 欧拉函数求和 杜教筛
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...
- 【bzoj3944/bzoj4805】Sum/欧拉函数求和 杜教筛
bzoj3944 题目描述 输入 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 输出 一共T行,每行两个用空格分隔的数ans1,ans2 样例输 ...
- 【BZOJ3944/4805】Sum/欧拉函数求和 杜教筛
[BZOJ3944]Sum Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用 ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
- 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...
- 【XSY2754】求和 莫比乌斯反演 杜教筛
题目描述 给你\(n,p\),求 \[ \sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^i\gcd(i,j,k)\mod p \] \(n\leq {10}^9\) 题解 \[ ...
- LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...
- LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]
传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...
随机推荐
- Javascript 综合示例 网页扫雷游戏
---------------认定了的事情,只要是对的,干到底! ------------------------------------------------------------------- ...
- awk分析mysql状态
今天是腊月27,明天是腊月28,一到过年,就习惯说农历,而不说公历.这两天挺闲的,就再造一把. 话说Linux处理文本工具有三剑客,awk.grep.sed,其中awk最为厉害,grep也挺是常用.今 ...
- Python_每日习题_0003_完全平方数
# 题目 一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? # 程序分析 因为168对于指数爆炸来说实在太小了,所以可以直接省略数学分析,用最朴素的方法来获取 ...
- c++入门之再次探讨类属性
精辟博文:https://blog.csdn.net/msdnwolaile/article/details/51923859(转载,仅供学习|!)
- Linux安装Apache常见报错(二)
配置Apache提示报错configure error: APR could not be located. Please use the --with-apr option. 解决办法: ./con ...
- 关于XLL加载项动态加载、卸载的演示及XLL函数自定义类型注册的演示
1.在XLL中,把函数定义成不同的类型,在Excel中的实际效果也不同,具体如下: pxMacroType value ...
- BAT (中国互联网公司三巨头)
BAT,B=百度.A=阿里巴巴.T=腾讯,是中国互联网公司百度公司(Baidu).阿里巴巴集团(Alibaba).腾讯公司(Tencent)三大互联网公司首字母的缩写.百度总部在北京.阿里巴巴总部在浙 ...
- nginx学习笔记二
一,nginx架构在Linux系统中以daemon(守护进程)的方式在后台运行,后台进程包含一个master进程和多个worker进程(多进程的工作方式) master进程 | 信号 | | ---- ...
- 【问题解决方案】Git bash进入多层子目录问题(通配符问题留坑)
cd进入指定路径下:cd 斜杠 斜杠 方法一: 1- 撇丿,不是"那",盘符前面要加上 / (d盘前面也加,不加也行) 2- 路径名不区分大小写 3- 不用空格 4- 如果目录名中 ...
- 前端开发之jQuery库
使用jquery开发的时候,如果我们不想使用自己的jquery文件,那么可以引用现成的地址.方便日常开发使用 jquery-2.0以上版本 (注!不再支持IE 6/7/8) jquery-2.0.0百 ...