题解-AtCoder-agc006C Rabbit Exercise
Problem
题意:数轴上有\(n\)个点(初始坐标均为整数),编号为\(1\)~\(n\)。给出\(m\)个操作。
每个操作会选定点\(a\),然后随机在点\(a-1\)和点\(a+1\)中选一个,将点\(a\)以选中的点为中心做对称,将这\(m\)个操作按顺序执行\(k\)遍(\(1\)~\(m\)完整执行一次算\(1\)遍),求最终每个点的位置的期望值
Solution
不难发现根据期望的线性型,在\(a-1\)和\(a+1\)之间随机选一个进行对称操作的期望等价于在\(a-1\)和\(a+1\)的中点处进行对称
则我们发现,对于点\(B\)在点\(A\)和\(C\)之间,若\(A\)到\(B\)距离为\(a\),若\(B\)到\(C\)距离为\(b\),则对称后的位置\(B'\)与\(A\)距离为\(b\),与\(C\)距离为\(a\)(如下图)
发现如果我们用一个差分数组\(d_i=a_{i+1}-a_i\)存下\(a_i\)数组的话,对称操作相当于交换\(d_i,d_{i+1}\)
发现进行一轮操作后,整个序列会成为若干个对换环(一个对换环相当于将整个环旋转一格再重新赋值),而进行\(k\)次操作相当于将所有环旋转\(k\)格
发现如果整个环的大小为\(c\),则环旋转\(k\)次和旋转\(k\bmod c\)次是等价的,则复杂度与\(k\)无关,整体复杂度\(O(n+m)\)
Code
#include <algorithm>
#include <cstdio>
#include <cctype>
using namespace std;
typedef long long ll;
#define rg register
template <typename _Tp> inline _Tp read(_Tp&x){
char c11=getchar(),ob=0;x=0;
while(c11^'-'&&!isdigit(c11))c11=getchar();if(c11=='-')ob=1,c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
}
const int N=101000;
int a[N],vis[N],st[N];
ll b[N],p[N],k;
int n,m,tp;
void init();void work();void print();
int main(){init();work();print();return 0;}
void work(){
int x;
for(rg int i=1;i<=m;++i)read(x),swap(a[x],a[x+1]);
for(rg int i=1;i<=n;++i)if(!vis[i]){
vis[st[0]=x=i]=tp=1;
while(!vis[a[x]])
vis[st[tp++]=x=a[x]]=1;
int e=k%tp;
for(rg int j=0;j<tp;++j)
b[st[j]]=p[st[j+e<tp?j+e:j+e-tp]];
}
}
void print(){
ll sm(0ll);
for(rg int i=1;i<=n;++i)
printf("%lld\n",sm+=b[i]);
}
void init(){
read(n);
for(rg int i=1;i<=n;++i)read(p[i]),a[i]=i;
for(rg int i=n;i;--i)p[i]-=p[i-1];
read(m),read(k);
}
题解-AtCoder-agc006C Rabbit Exercise的更多相关文章
- 【做题】agc006C - Rabbit Exercise——模型转换
原文链接https://www.cnblogs.com/cly-none/p/9745177.html 题意:数轴上有\(n\)个点,从\(1\)到\(n\)编号.有\(m\)个操作,每次操作给出一个 ...
- AGC006C Rabbit Exercise
传送门 设 \(f_{i,j}\) 表示兔子 \(i\) 在当前 \(j\) 轮的期望位置 对于一次操作 \(f_{i,j+1}=\frac{1}{2}(2f_{i-1,j}-f_{i,j})+\fr ...
- AT2164 [AGC006C] Rabbit Exercise
首先我们可以考虑一下 \(x\) 关于 \(y\) 的对称点的坐标,不难发现就是 \(x + 2 \times (y - x)\),那么期望的增量就会增加 \(2 \times (y - x)\).不 ...
- 【AtCoder】【思维】【置换】Rabbit Exercise
题意: 有n只兔子,i号兔子开始的时候在a[i]号位置.每一轮操作都将若干只兔子依次进行操作: 加入操作的是b[i]号兔子,就将b[i]号兔子移动到关于b[i]-1号兔子现在所在的位置对称的地方,或者 ...
- AtCoder Grand Contest 006 (AGC006) C - Rabbit Exercise 概率期望
原文链接https://www.cnblogs.com/zhouzhendong/p/AGC006C.html 题目传送门 - AGC006C 题意 有 $n$ 个兔子,从 $1$ 到 $n$ 编号, ...
- 【agc006C】Rabbit Exercise
Portal --> agc006C Solution 啊感觉是好有意思的一道题qwq官方题解里面的说辞也是够皮的哈哈哈..(大概就是说如果你没有意识到那个trick的话这题这辈子都做不出来qw ...
- AtCoder Grand Contest 006 C:Rabbit Exercise
题目传送门:https://agc006.contest.atcoder.jp/tasks/agc006_c 题目翻译 数轴上有\(N\)只兔子,从\(1\)到\(N\)编号,每只兔子初始位置是\(x ...
- 【AGC006C】Rabbit Exercise 置换
题目描述 有\(n\)只兔子站在数轴上.为了方便,将这些兔子标号为\(1\ldots n\).第\(i\)只兔子的初始位置为\(a_i\). 现在这些兔子会按照下面的规则做若干套体操.每一套体操由\( ...
- [Atcoder Grand 006 C] Rabbit Exercise 解题报告 (期望)
题目链接:https://www.luogu.org/problemnew/show/AT2164 https://agc006.contest.atcoder.jp/tasks/agc006_c 题 ...
随机推荐
- 【1】【leetcode-130】 被围绕的区域
(DFS思路对,写复杂了) 给定一个二维的矩阵,包含 'X' 和 'O'(字母 O). 找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充. 示例: X X X X X O ...
- 解决 git push Failed to connect to 127.0.0.1 port 8-87: 拒绝连接
今天在本地使用nsq 测试的时候总是提示端口被占用 通过查看环境变量确实存在该代理 如何解决 使用netstat 命令查看端口被占用情况 根据经常ID号查看是哪一个进程正在被占用 如何还是不行,则在[ ...
- JDK8新特性01 Lambda表达式01_设计的由来
1.java bean public class Employee { private int id; private String name; private int age; private do ...
- Debian Security Advisory(Debian安全报告) DSA-4407-1 xmltooling
Package : xmltooling CVE ID : CVE-2019-9628 Ross Geerlings发现xmltools库没有正确处理关于错误(畸形)XM ...
- [C++]2-4 子序列的和
/* 子序列的和(subsequence) 输入两个整数n<m<10^6,输出1/(n^2) + 1/((n+1)^2) + 1/((n+2)^2) 1/((n+3)^2) + ... + ...
- 几个js框架
easyui适合做后端 bootstrap适合前端 layui 其实更偏向与后端开发人员使用,在服务端页面上有非常好的效果.
- PHP cURL实现模拟登录与采集使用方法详解教程
来源:http://www.zjmainstay.cn/php-curl 本文将通过案例,整合浏览器工具与PHP程序,教你如何让数据 唾手可得 . 对于做过数据采集的人来说,cURL一定不会陌生.虽然 ...
- 将web项目导入到eclipse中常见错误
将web项目导入到eclipse中常见错误 错误1:string cannot be resolved to a type 原因:这种情况一般是因为你的JDK版本没有设置好,或者设置的有不一致的 ...
- 【译】第一篇 SQL Server安全概述
本篇文章是SQL Server安全系列的第一篇,详细内容请参考原文. Relational databases are used in an amazing variety of applicatio ...
- Mybatis(二)入门程序-通过id查找用户、模糊查找用户、添加用户、删除用户
根据下图myBatis的架构,创建一个使用MyBatis的工程. 一.配置MyBatis 环境(如图) 1.sqlMapConfig.xml 首先,导入jar包(上图右边)并加载路径,然后 ...