好题。不过之前做过的[SCOI2010]连续攻击游戏跟这题一个套路,我怎么没想到……

题目链接:CF原网 洛谷

题目大意:在一个学校有 $n$ 个学生和 $m$ 个社团,每个学生有一个非负整数能力值 $p_i$,一开始在社团 $c_i$。接下来有 $d$ 天,第 $i$ 天编号为 $k_i$ 的同学会离开他的社团。每天同学离开后会有一场比赛,要从每个社团里选一个人出来组队(如果社团没人了就不管)。队伍的能力是所有队员能力值集合的 $mex$(没出现过的最小非负整数)。问这个 $mex$ 最大是多少。

所有输入的数不超过 $5000$。


直接删除肯定不好搞,可以把删人的操作倒过来,变成加人。

然后我就一直在想数据结构,结果才发现数据结构学傻了……

我们建立一个二分图,一边是能力值,一边是社团。因为一个社团只能选一次,一个能力值最好也只选一次(一个能力值选多次肯定不会更优)。那么直接跑匈牙利,因为答案不降,所以每次试图往更大的扩展,如果能匹配到就继续,匹配不到那么这个值就是最大的 $mex$。接下来一个同学回来,就一条连边。

时间复杂度 $O(n+m(d+\max(p_i)))$。

注意细节,其中有个细节是with初始为 $-1$。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,m,p[maxn],c[maxn],d,k[maxn],with[maxn],el,head[maxn],to[maxn],nxt[maxn],tmp,ans[maxn];
bool vis[maxn],del[maxn];
inline void add(int u,int v){
to[++el]=v;nxt[el]=head[u];head[u]=el;
}
bool dfs(int u){
if(vis[u]) return false;
vis[u]=true;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(with[v]==- || dfs(with[v])){
with[u]=v;with[v]=u;
return true;
}
}
return false;
}
int main(){
MEM(with,-);
n=read();m=read();
FOR(i,,n) p[i]=read();
FOR(i,,n) c[i]=read();
d=read();
FOR(i,,d) del[k[i]=read()]=true;
FOR(i,,n) if(!del[i] && p[i]<m) add(p[i],c[i]+m),add(c[i]+m,p[i]);
ROF(i,d,){
MEM(vis,);
while(dfs(tmp)) tmp++,MEM(vis,);
ans[i]=tmp;
if(p[k[i]]<m) add(p[k[i]],c[k[i]]+m),add(c[k[i]]+m,p[k[i]]);
}
FOR(i,,d) printf("%d\n",ans[i]);
}

CF1139E Maximize Mex(二分图匹配,匈牙利算法)的更多相关文章

  1. HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  2. USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)

    The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...

  3. codeforces1139E Maximize Mex 二分图匹配

    题目传送门 题意:给出n个人,m个社团,每个人都有一个标号,一个能力值,并且属于一个社团,第i天的凌晨,第$k_i$个人会离开.每天每个社团最多派一个人出来参加活动.派出的人的能力值集合为S,求每天$ ...

  4. Codevs 1222 信与信封问题 二分图匹配,匈牙利算法

    题目: http://codevs.cn/problem/1222/ 1222 信与信封问题   时间限制: 1 s   空间限制: 128000 KB   题目等级 : 钻石 Diamond 题解 ...

  5. (转)二分图匹配匈牙利算法与KM算法

    匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名 ...

  6. BZOJ1059 [ZJOI2007]矩阵游戏 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1059 题意概括 有一个n*n(n<=200)的01矩阵,问你是否可以通过交换整行和整列使得左 ...

  7. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  8. 矩阵游戏|ZJOI2007|BZOJ1059|codevs1433|luoguP1129|二分图匹配|匈牙利算法|Elena

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MB Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩 ...

  9. BZOJ 1191 [HNOI2006]超级英雄Hero:二分图匹配 匈牙利算法

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1191 题意: 有m道题,每答对一题才能接着回答下一个问题. 你一道题都不会,但是你有n个“ ...

  10. [bzoj]1059矩阵游戏<二分图匹配*匈牙利算法>

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1059 初见此题,我觉得这是水题,我认为只要每一行和每一列至少存在一个黑格就可以出现对角线, ...

随机推荐

  1. js数据放入缓存,需要再调用

    再贴代码之前先描述下,这个技术应用的场景:一个页面的http请求次数能少点就少,这样大大提高用户体验.所以再一个页面发起一个请求,把所有数据都拿到后储存在缓存里面,你想用的时候再调用出来,这个是非常好 ...

  2. 容错处理try

    var num = 90; try{ console.log( num + 100 ); consolel.log(aaa); }catch(e){ console.log("如果程序中有异 ...

  3. Linux 查找文件命令 find whereis locate

    Linux 有三个查找文件的命令:find, whereis, locate 其中find 不常用,whereis与locate经常使用,因为find命令速度较慢,因为whereis与locate是利 ...

  4. Azure系列2.1.7 —— BlobRequestOptions

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  5. 【转帖】介绍 .NET Standard

    [译]介绍 .NET Standard https://zhuanlan.zhihu.com/p/24267356 跟开发争执过 自己不会写代码 的确不好. 若有任何对翻译的建议,烦请指正 有任何问题 ...

  6. Oracle转换函数

    ()--转换函数 --数字转换字符串 )||'分' from dual; ||'' from dual; ()--日期转字符串 select to_char(sysdate,'yyyy-mm-dd') ...

  7. spring-01

    Spring概述 概述 Spring是一个开源框架 为企业级开发而生 是一个IOC[DI]和AOP容器框架 有许多优良特性 非侵入式:基于Spring开发的应用中的对象可以不依赖Spring的API. ...

  8. jQ append 添加html 及字符串拼接

    如图,我要拼接这样一段html: 点击下边添加按钮,不断添加这段Html html: <div class="x_addtable"> <div class=&q ...

  9. bash中的pasue

    #!/bin/bash echo 按任意键继续 read -n

  10. 【转】console.log 用法

    标签: 转自http://www.cnblogs.com/ctriphire/p/4116207.html 大家都有用过各种类型的浏览器,每种浏览器都有自己的特色,本人拙见,在我用过的浏览器当中,我是 ...