HDU - 1695 GDU
莫比乌斯反演基础。
用rep 去掉重复的对数,rep一定是奇数( 因为有(1,1 ) )
#include <bits/stdc++.h>
using namespace std;
#define fst first
#define scd second
#define pb(x) push_back((x))
#define mkp(x,y) make_pair((x),(y))
#define ist(x) insert((x))
typedef long long ll;
typedef pair<int ,int > pii;
typedef pair<ll ,ll > pll;
typedef vector< int > vi;
ll gcd(ll a,ll b){ return b==?a:gcd(b,a%b);}
ll qPow(ll a,ll b,ll mod){ ll ret=1ll;while(b){ if(b&) ret=ret*a%mod;a=a*a%mod;b>>=;} return ret; } const int maxN=1e5+;
bool check[maxN+];
int prime[maxN+];
int mu[maxN+];
void init(){
memset(check,false,sizeof(check));
mu[]=;
int tot=;
for(int i=;i<=maxN;++i){
if(!check[i]) { prime[tot++]=i; mu[i]=-; }
for(int j=;j<tot;++j){
long long k=i*prime[j];// may overflow ,
if(k>maxN) break;
check[k]=true;
if(i%prime[j]==){ mu[k]=; break; }
else mu[k]=-mu[i];
}
}
/*
for(int i=1;i<=100;++i)
printf(" mobi %d : %d\n",i,mu[i]);
*/
} int main(){
init();
int T;
scanf("%d",&T);
for(int cntT=;cntT<=T;++cntT){
printf("Case %d: ",cntT);
int A,B,C,D,K;
scanf("%d%d%d%d%d",&A,&B,&C,&D,&K);
if(!K) { puts("");continue; }
ll ans=0ll;
ll rep=0ll;
B/=K,D/=K;
int bound=min(B,D);
for(int i=;i<=bound;++i) {
ans+=1ll*mu[i]*(B/i)*(D/i);
//printf("after %d : %lld\n",i,ans);
}
for(int i=;i<=bound;++i) rep+=1ll*mu[i]*(bound/i)*(bound/i);
//printf(" \n%lld %lld\n",ans,rep);
printf("%lld\n",ans-rep/);
}
return ;
}
HDU - 1695 GDU的更多相关文章
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...
- HDU 1695
http://acm.hdu.edu.cn/showproblem.php?pid=1695 x是[1,b],y是[1,d],求GCD(x,y)=k的对数(x,y无序) 对x,y都除以k,则求GCD( ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- HDU 1695 GCD#容斥原理
http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
随机推荐
- 二、初步认识springBoot的pom.xml
1. 大体结构 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www. ...
- Servlet-Context学习笔记
介绍 ServletContext其实就是全局作用域对象, 上下文环境对象 利用context可以实现对,当前网站中所有的Servlet共享数据 context对象只能由Tomcat负责创建,在tom ...
- 机器学习笔记之二-win10+cuda9.1+CUDNN7+Anaconda3+VS2017+tensorflow1.5+opencv3.4
[Tensorflow]环境搭建vs2017+win10+py3.6+cuda9.1+cudnn7+tf1.5 一.安装cuda 9.1+VS2017 一路下一步即可,环境变量cuda会自动配好 ...
- windows10下 MySQL5.7.18版本安装过程及遇到的问题
windows10下 MySQL5.7.18版本安装过程及遇到的问题 mysql-5.7.18-winx64 安装 1.解压 此次将MySQL装在H盘,依个人喜 ...
- python,字符串方法
1.capitalize() 首字母大写 text = "hello word" text2 = text.capitalize() print(text2) 2.1.casefo ...
- 【转】Lombok 安装、入门 - 消除冗长的 java 代码
前言: 逛开源社区的时候无意发现的,用了一段时间,觉得还可以,特此推荐一下. lombok 提供了简单的注解的形式来帮助我们简化消除一些必须有但显得很臃肿的 java 代码.特别是相对于 ...
- python3使用pymysql库连接MySQL的常用操作
#导入pymysql模块import pymysql #连接数据库connect = pymysql.connect( host='localhost', port=3306, user='root' ...
- mongo 索引 安全、备份与恢复
一.索引 创建大量数据 for(i=0;i<100000;i++){ db.t1.insert({name:"test"+i,age:i}) } 数据查找性能分析 db.t1 ...
- 实战ELK(8) 安装ElasticSearch中文分词器
安装 方法1 - download pre-build package from here: https://github.com/medcl/elasticsearch-analysis-ik/re ...
- 【HDFS API编程】图解客户端从HDFS读数据的流程