An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    

    

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<= 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print "YES" if the tree is complete, or "NO" if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO
 #include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
struct Node{
int data, h;
Node *left, *right;
};
bool completeAVL = true;
int printFlag; Node *newNode(int x){
Node *p = new Node();
p->data = x;
p->left = p->right = NULL;
p->h = ;
return p;
}
int getHeight(Node *root){//获得高度
if(root == NULL) return ;
return root->h;
} int getBanance(Node *root){//获得平衡因子
if(root == NULL) return ;
return getHeight(root->left)-getHeight(root->right);
} void updateHeight(Node *root){//更新高度
if(root){
root->h = max(getHeight(root->left), getHeight(root->right))+;
}
} void R(Node *&root){//右旋
Node *p = root->left;
root->left = p->right;
p->right = root;
updateHeight(root);
updateHeight(p);
root = p;
} void L(Node *&root){//左旋
Node *p = root->right;
root->right = p->left;
p->left = root;
updateHeight(root);
updateHeight(p);
root = p;
} void insert(Node *&root, int x){
if(root == NULL){
root = newNode(x);
return;
}
if(x < root->data){
insert(root->left, x);
updateHeight(root);
if(getBanance(root) == ){
if(getBanance(root->left) == ){
R(root);
}else{//-1
L(root->left);
R(root);
}
}
}else{
insert(root->right, x);
updateHeight(root);
if(getBanance(root) == -){
if(getBanance(root->right) == -){
L(root);
}else{//
R(root->right);
L(root);
}
}
}
} void levelOrder(Node *root){
queue<Node *> q;
q.push(root);
int hasMeetLeaf = false;
while(!q.empty()){
Node* t = q.front(); q.pop();
if(t->left){
if(hasMeetLeaf) completeAVL = false;
q.push(t->left);
}else{
hasMeetLeaf = true;
}
if(t->right){
if(hasMeetLeaf) completeAVL = false;
q.push(t->right);
}else{
hasMeetLeaf = true;
}
if(-- printFlag) printf("%d ", t->data);
else printf("%d\n", t->data);
}
} int main()
{
int N;
Node *root = NULL;
scanf("%d", &N);
for(int i = ; i < N; i ++){
int x;
scanf("%d", &x);
insert(root, x);
}
printFlag = N; levelOrder(root);
if(completeAVL) printf("YES\n");
else printf("NO\n");
return ;
}

1123. Is It a Complete AVL Tree (30)的更多相关文章

  1. PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  2. PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  3. PAT 1123. Is It a Complete AVL Tree (30)

    AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...

  4. 1123 Is It a Complete AVL Tree

    1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...

  5. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  6. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  8. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

随机推荐

  1. 关于JVM加载内存图学习小密招

    先看如下代码: Person.java public class Person { private String name; private int age; static int count = 0 ...

  2. PHP入门——基本巩固

    ----------一.变量 ----------二.运算 ----------三.控制结构 ----------四.函数 ----------六.字符串 ----------七.数组 ------- ...

  3. Never Wait for Weights(带权并查集+路径压缩)

    题目链接:http://acm.sdibt.edu.cn/vjudge/contest/view.action?cid=2209#problem/F !a b w 表示b比a大w ?  a b  输出 ...

  4. Centos7下Rinetd安装与应用(转)

    Linux下做地址NAT有很多种方法.比如haproxy.nginx的4层代理,linux自带的iptables等都能实现.haproxy.nginx就不说了,配置相对简单:iptables配置复杂, ...

  5. 超详细的遗传算法(Genetic Algorithm)解析

    https://blog.csdn.net/u010451580/article/details/51178225 https://www.jianshu.com/p/c82f09adee8f 00 ...

  6. 给C#Control组件统一增加加属性

    http://www.cnblogs.com/SharkXu/archive/2006/08/24/EnterGoto.html

  7. 工程启动没有报错,但是dubbo后台显示没有提供者,工程没有提供服务

    先说一下我遇到的问题:服务工程启动没有异常,消费者工程启动会出现很多nested(嵌套的)错误,但其根本错误是No provider available(缺少服务提供者).可是服务工程起来的时候明明没 ...

  8. 数据仓库系列 - 缓慢渐变维度 (Slowly Changing Dimension) 常见的三种类型及原型设计

    在从 OLTP 业务数据库向 DW 数据仓库抽取数据的过程中,特别是第一次导入之后的每一次增量抽取往往会遇到这样的问题:业务数据库中的一些数据发生了更改,到底要不要将这些变化也反映到数据仓库中?在数据 ...

  9. java List递归排序,传统方式和java8 Stream优化递归,无序的列表按照父级关系进行排序(两种排序类型)

    当有一个List列表是无序的,List中的数据有parentid进行关联,通过java排序成两种排序类型: 所用的测试列表最顶级无parentid,若为特殊值,修改下判断方法即可. 第一种排序:按照树 ...

  10. pandas中的时间序列基础

    重要的数据形式时间序列 datetime以毫秒形式存储日期和时间 now = datetime.now() now datetime.datetime(2018, 12, 18, 14, 18, 27 ...