1,表头或是excel的索引如果是中文的话,输出会出错

​​解决方法:python的版本问题!换成python3就自动解决了!当然也有其他的方法,这里就不再深究

2,如果有很多列,如何输出指定的列?

需求情况:有的时候,数据很多,但是只要仅仅对部分列的数据进行分析的话,要怎么做?

解决方法

df = pandas.read_excel('1.xls',sheetname= '店铺分析日报')

​df = df.loc[:,['关键词','带来的访客数','跳失率']] #访问指定的列

一行读取数据,第二行访问指定列

3,如何为数据框添加新的列?

需求情况:有一个表格,里面的列是单价,数量,想再输出一个总价的列,或是对一些数据进行总结

解决方法:直接上代码

from pandas import read_csv;

import pandas;

df = read_csv("1.csv", sep="|");

#把计算结果添加为一个新的列

df['result'] = df.price*df.num     #新的列名,后面是对应的数值

print (df)

4,如何对百分号的数值进行计算,再将其输出

需求情况:比较蛋疼的一个情况,电商很多数据都是百分比的,带有百分号,不能进行直接的计算,需要对其进行转换,然后再输出

解决方法:

from pandas import read_csv;

import pandas;

df = read_csv("1.csv", sep="|");

f = df['跳失率'].str.strip("%").astype(float)/100;

f.round(decimals=2)  #保留小数点后面2位

f_str = f.apply(lambda x: format(x, '.2%'));  #再转换成百分号并且保留2位数(精度可以调整)

df['跳失率']​ = f_str     #重新赋值

5,​如何获取导入的数据有几行和几列(数值)

需求情况:有的时候需要写一个通用脚本,比如随机抽样分析,程序自动获取行和列的话,写出来的脚本通用性明显会很强

解决方法:

df.columns.size   #获取列数

df.iloc[:, 0].size  #获取行数

6,​如何对数据进行排序

需求情况:这个就不用说了,到处都要用到​

解决方法:

df['跳失率'].size   #对数据进行排序

newDF = df.sort(['曝光量', '带来的访客数'], ascending=[True, False]);  #多重排序

7,如何删除指定的列?

需求情况:同样,十几列的数据,如果你想获取指定的输出数据,可以用方法2,但是如果想要获取的数据列比较多,只有1-2行不想要,这样就可以用指定删除列的方法了

解决方法:

df.columns.delete(1)​

一行代码搞定!​

总结:整体来说的,python的语法在做数据分析还是相当简单的,很多的需求基本上就是一行代码搞定!

8,如何添加整行数据?

df.append([1,2,34,,5])

Python数据分析几个比较常用的方法的更多相关文章

  1. Python语言学习:列表常用的方法

    python 列表常用的方法 1.append( ):用于在列表末尾添加新的对象 list.appent(obj) #obj:添加到列表末尾的对象 #!/usr/bin/python aList = ...

  2. Python语言学习:字符串常用的方法

    python字符串常用的方法 1. find( ):在字符串中搜索指定的值并返回它被找到的位置,如果没有找到,则返回-1 string.find(value,start,end) #value:必需, ...

  3. python join 和 split的常用使用方法

    函数:string.join()Python中有join()和os.path.join()两个函数,具体作用如下:    join():    连接字符串数组.将字符串.元组.列表中的元素以指定的字符 ...

  4. python中字符串(str)的常用处理方法

    str='python String function' 生成字符串变量str='python String function' 字符串长度获取:len(str)例:print '%s length= ...

  5. python数据分析开发中的常用整理

    Pandas操作 python使用pandas读取csv import pandas as pd #数据筛选 usetTable = pd.read_csv(filename,header = 0) ...

  6. Python 基础之面向对象之常用魔术方法

    一.__init__魔术属性 触发时机:实例化对象,初始化的时候触发功能:为对象添加成员,用来做初始化的参数:参数不固定,至少一个self参数返回值:无 1.基本用法 #例:class MyClass ...

  7. Python语言学习:字典常用的方法

    1. 增加:字典[key]=value(不存在的key和value) info={ 'stu1101':'TengLan', 'stu1102':'LuoZe', 'stu1103':'XiaoZe' ...

  8. python数据分析&挖掘,机器学习环境配置

    目录 一.什么是数据分析 1.这里引用网上的定义: 2.数据分析发展与组成 3.特点 二.python数据分析环境及各类常用分析包配置 1.处理的数据类型 2.为什么选择python 三.python ...

  9. Python数据分析与挖掘所需的Pandas常用知识

    Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series ...

随机推荐

  1. 20165221 2017-2018-2《Java程序设计》课程总结

    20165221 2017-2018-2<Java程序设计>课程总结 一.作业连接汇总 每周作业链接 预备作业一: 20165221我期望的师生关系 预备作业二: 20165221学习基础 ...

  2. CORS(Cross-origin resource sharing) “跨域资源共享”

    CORS与JSONP的比较 在出现CORS标准之前, 我们还只能通过jsonp的形式去向“跨源”服务器去发送 XMLHttpRequest 请求,这种方式吃力不讨好,在请求方与接收方都需要做处理,而且 ...

  3. office xml 方式

    office2007以上版本(2003需要增加2007插件)可以采用xml方式操作生成excel,效率高,无并发问题,比传统com组件方式更方便

  4. DbProviderFactory

    背景 在此之前,我一直以为调用哪个数据库就要用它专门的链接,除非是odbc方式.后来用了java,想.net怎么没有通用的链接呢,尤其是oracle,还要装他的客户端,如此不方便竟然能流行起来.后来知 ...

  5. 写markdown博客如何将截图快速上传到图床——记一个工具插件的实现(windows版 开源)

    打造一个上传图片到图床利器的插件(Mac版 开源)(2018-06-24 19:44) 更新于2018年2月 做了以下改动: 1.修复了一个bug,把服务器区域做成可配: 七牛有华北,华东,华南以及美 ...

  6. ubuntu server 14.04 上安装jdk1.8

    ubuntu server 14.04 上安装jdk1.8 1.使用apt-get安装oracle-jdk安装oracle jdk sudo apt-get install python-softwa ...

  7. python学习第9-10天,函数。

    函数初识 为什么要使用函数? 函数最重要的目的是方便我们重复使用相同的一段程序. 将一些操作隶属于一个函数,以后你想实现相同的操作的时候,只用调用函数名就可以,而不需要重复敲所有的语句. 函数的定义与 ...

  8. 前端 ----jQuery的动画效果

    03-jQuery动画效果   jQuery提供的一组网页中常见的动画效果,这些动画是标准的.有规律的效果:同时还提供给我们了自定义动画的功能. 显示动画 方式一: $("div" ...

  9. 【CSS】Bootstrap中select2+popover冲突

    网上搜索得到: It changes the position because the position is based on the popover's dimansions and select ...

  10. Git- 连接远程仓库

    如何使用Git 连接远程仓库呢?远程仓库->一般指的是代码托管平台.那就先来瞅瞅三个较熟悉的版本(代码)托管服务平台. 版本(代码)托管服务平台: 码云(gitee.com):是开源中国社区团队 ...