【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)

题面

BZOJ

洛谷

题解

考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数。

显然就是把\(1\)当做隔板插入进去,那么有\(y+1\)个位置可以放\(1\),所以方案数就是\({y+1\choose x}\)。

而\(x^ay^b\)的贡献可以直接快速幂算,所以问题变成了求组合数。然后\(Lucas\)一下就可以得到\(TLE\)的好成绩了。复杂度\(O(nlogn)\)(事实上只要有快速幂就会\(T\))

那就换种做法吧。。。来\(dp\)。

把\(x^ay^b\)展开其中一个部分,即\((n-y)^ay^b\),大力展开之后变成了\(\displaystyle y^b\sum_{i=0}^a{a\choose i}(-y)^{a-i}n^{i}\)。再化简一下就是\(\displaystyle \sum_{i=0}^a{a\choose i}(-1)^{a-i}y^{a+b-i}n^i\),因此只需要对于每一个\(i\),求\(y^{a+b-i}\)的和就好了。

设\(f[i][j][0/1]\)表示现在考虑到了第\(i\)位,这一位填的数是\(0/1\)的特征值的\(j\)次方和。

那么这样子考虑在这一位上填上了一个\(1\),那么\(y^j\)变成了\((y+1)^j\),二项式定理展开+做差之后,得到的就是\((y+1)^j=\sum_{i=0}^{j} {j\choose i}y^i\)。

这样子就可以使用矩乘来进行转移,时间复杂度大概是\(O((2(a+b+1))^3log)\)。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 10000100
int a,b,n,N,ans,MOD,C[200][200],pw[200];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
struct Matrix
{
int s[200][200];
void clear(){memset(s,0,sizeof(s));}
void pre(){clear();for(int i=0;i<N;++i)s[i][i]=1;}
int*operator[](int x){return s[x];}
}G;
Matrix operator*(Matrix &a,Matrix &b)
{
Matrix ret;ret.clear();
for(int i=0;i<N;++i)
for(int k=0;k<N;++k)
if(a[i][k])
for(int j=0;j<N;++j)
ret[i][j]=(ret[i][j]+1ll*a[i][k]*b[k][j])%MOD;
return ret;
}
Matrix fpow(Matrix a,int b)
{
Matrix s;s.clear();s[0][0]=1;
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&MOD);
for(int i=0;i<=a+b;++i)C[i][0]=1;
for(int i=1;i<=a+b;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
pw[0]=1;for(int i=1;i<=a+b;++i)pw[i]=1ll*pw[i-1]*n%MOD;
int l=a+b+1;N=l<<1;
for(int i=0;i<=a+b;++i)
{
G[i+l][i]=G[i][i]=1;
for(int j=0;j<=i;++j)G[j][i+l]=C[i][j];
}
Matrix A=fpow(G,n);
for(int i=0,d=(a&1)?MOD-1:1;i<=a;++i,d=MOD-d)
ans=(ans+1ll*C[a][i]*d%MOD*(A[0][a+b-i]+A[0][a+b-i+l])%MOD*pw[i])%MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)的更多相关文章

  1. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  2. poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂

      (Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  3. hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)

    题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...

  4. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  5. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  6. BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)

    显然答案为Σkb·(n-k)a·C(n-k+1,k).并且可以发现ΣC(n-k,k)=fibn.但这实际上没有任何卵用. 纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/ ...

  7. [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)

    https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...

  8. BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)

    设f[i][j]为第i天到达j号城市的方案数,转移显然,答案即为每天在每个点的方案数之和.矩乘一发即可. #include<iostream> #include<cstdio> ...

  9. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

随机推荐

  1. Python_面向对象_单例模式

    class A(object): pass a1 = A() a2 = A() print(a1 == a2)print(id(a1))print(id(a2)) 结果: False 23257231 ...

  2. 自己实现数据结构系列三---Stack

    一.代码部分 1.定义接口 public interface Stack<E> { int getSize(); boolean isEmpty(); void push(E e); E ...

  3. Linux系统mysql使用(二)

    一.查看某数据库的表 # 假设此时数据库名为hiveuse hive; show tables;

  4. Linux查看和注销用户(User)

    Linux如何注销其他用户?_Linux教程_Linux公社-Linux系统门户网站https://www.linuxidc.com/Linux/2012-07/64939.htm linux注销指定 ...

  5. js上传视频(jquery.form.js)

    // 上传目标触发点 <input type="file" class="upvideo" name="upvideo" id=&qu ...

  6. 百度地图api在Html中显示,在jsp页面中不显示解决方法

    在jsp页面中显示如下 但是在html中正常显示. 原来的代码如下: <script type="text/javascript" src="http://api. ...

  7. laravel实现批量添加数据

    在使用laravel eloquent进行数据库操作的时候惊讶的发现这货居然不支持批量添加,看到网上很多人在循环里进行数据库插入操作来实现批量添加,我想说这样做是很损失性能滴!好在框架的DB门面里的i ...

  8. python爬虫scrapy之scrapy终端(Scrapy shell)

    Scrapy终端是一个交互终端,供您在未启动spider的情况下尝试及调试您的爬取代码. 其本意是用来测试提取数据的代码,不过您可以将其作为正常的Python终端,在上面测试任何的Python代码. ...

  9. 在python中定义二维数组

    发表于 http://liamchzh.0fees.net/?p=234&i=1 一次偶然的机会,发现python中list非常有意思. 先看一段代码 [py]array = [0, 0, 0 ...

  10. Ansible入门与实践

    一.ansible介绍 Ansible是一个简单的自动化运维管理工具,基于Python语言实现,由Paramiko和PyYAML两个关键模块构建,可用于自动化部署应用.配置.编排task(持续交付.无 ...