【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)
【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)
题面
题解
考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数。
显然就是把\(1\)当做隔板插入进去,那么有\(y+1\)个位置可以放\(1\),所以方案数就是\({y+1\choose x}\)。
而\(x^ay^b\)的贡献可以直接快速幂算,所以问题变成了求组合数。然后\(Lucas\)一下就可以得到\(TLE\)的好成绩了。复杂度\(O(nlogn)\)(事实上只要有快速幂就会\(T\))
那就换种做法吧。。。来\(dp\)。
把\(x^ay^b\)展开其中一个部分,即\((n-y)^ay^b\),大力展开之后变成了\(\displaystyle y^b\sum_{i=0}^a{a\choose i}(-y)^{a-i}n^{i}\)。再化简一下就是\(\displaystyle \sum_{i=0}^a{a\choose i}(-1)^{a-i}y^{a+b-i}n^i\),因此只需要对于每一个\(i\),求\(y^{a+b-i}\)的和就好了。
设\(f[i][j][0/1]\)表示现在考虑到了第\(i\)位,这一位填的数是\(0/1\)的特征值的\(j\)次方和。
那么这样子考虑在这一位上填上了一个\(1\),那么\(y^j\)变成了\((y+1)^j\),二项式定理展开+做差之后,得到的就是\((y+1)^j=\sum_{i=0}^{j} {j\choose i}y^i\)。
这样子就可以使用矩乘来进行转移,时间复杂度大概是\(O((2(a+b+1))^3log)\)。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 10000100
int a,b,n,N,ans,MOD,C[200][200],pw[200];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
struct Matrix
{
int s[200][200];
void clear(){memset(s,0,sizeof(s));}
void pre(){clear();for(int i=0;i<N;++i)s[i][i]=1;}
int*operator[](int x){return s[x];}
}G;
Matrix operator*(Matrix &a,Matrix &b)
{
Matrix ret;ret.clear();
for(int i=0;i<N;++i)
for(int k=0;k<N;++k)
if(a[i][k])
for(int j=0;j<N;++j)
ret[i][j]=(ret[i][j]+1ll*a[i][k]*b[k][j])%MOD;
return ret;
}
Matrix fpow(Matrix a,int b)
{
Matrix s;s.clear();s[0][0]=1;
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&MOD);
for(int i=0;i<=a+b;++i)C[i][0]=1;
for(int i=1;i<=a+b;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
pw[0]=1;for(int i=1;i<=a+b;++i)pw[i]=1ll*pw[i-1]*n%MOD;
int l=a+b+1;N=l<<1;
for(int i=0;i<=a+b;++i)
{
G[i+l][i]=G[i][i]=1;
for(int j=0;j<=i;++j)G[j][i+l]=C[i][j];
}
Matrix A=fpow(G,n);
for(int i=0,d=(a&1)?MOD-1:1;i<=a;++i,d=MOD-d)
ans=(ans+1ll*C[a][i]*d%MOD*(A[0][a+b-i]+A[0][a+b-i+l])%MOD*pw[i])%MOD;
printf("%d\n",ans);
return 0;
}
【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)的更多相关文章
- [CQOI2018]交错序列 (矩阵快速幂,数论)
[CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)
题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)
显然答案为Σkb·(n-k)a·C(n-k+1,k).并且可以发现ΣC(n-k,k)=fibn.但这实际上没有任何卵用. 纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/ ...
- [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)
https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...
- BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)
设f[i][j]为第i天到达j号城市的方案数,转移显然,答案即为每天在每个点的方案数之和.矩乘一发即可. #include<iostream> #include<cstdio> ...
- BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...
随机推荐
- selenium模拟登陆淘宝
from selenium import webdriver import time from selenium.webdriver.common.by import By from selenium ...
- 非常详细的Docker学习教程
一.Docker 简介 Docker 两个主要部件: Docker: 开源的容器虚拟化平台 Docker Hub: 用于分享.管理 Docker 容器的 Docker SaaS 平台 -- Docke ...
- LLDB 3.9.1 安装方法
1. baidu到一个安装方法 进行尝试: 来源: https://zhuanlan.zhihu.com/p/40780819https://www.jianshu.com/p/f965bbba6eb ...
- 销售合同金额数据从Excel导入
一.业务需求 1.新增了销售合同金额的字段,但是老数据没有这个字段:所以销售合同金额从销售合同附件的各品种金额之和. 2.制作好excel字段模板,将此模板发送给销售业务部门来统计并完成excel表格 ...
- 使用urllib2+re爬取web网站
应用1,使用urllib2+re爬取淘宝网指定页面的所有图片
- 关于 flask 实现数据库迁移以后 如何根据创建的模型类添加新的表?
在此之前 我们先说一下常规的flask运用第三方扩展来实现数据库的迁移的三个步骤以及每步的目的. 数据库的迁移的三个步骤:(cd 到run.py所在路径) python run.py db init ...
- html5 表單屬性
新的 form 属性: autocomplete novalidate 新的 input 属性: autocomplete autofocus form form overrides (formact ...
- LODOP中预览界面查看打印机的可打区域具体值
LODOP在打印预览的时候,如果选择的打印机是真实打印机,会发现可能会有虚线,不同打印机虚线的位置不同,这个虚线是打印机的可打区域,Lodop无法控制. 可打区域,顾名思义,就是打印机可以打印的区域, ...
- MyISAM索引和InnoDB索引的区别
首先你要知道: 无论是Myisam和Innodb引擎,如果在建表的时候没有显示的定义一行主键列的话,他内部都会自动创建一个隐藏的主键索引: 主键索引以外的索引假设称为次索引:首先Myisam和Inno ...
- DFI LP DK P45 T2RS PLUS BIOS SETTING
standard cmos features date (mm:dd:yy) mon,oct 11 2016 time (hh:mm:ss) 10 : 10 : 26 ide channel 0 sa ...