题意

链接

Sol

这个题就很休闲了。。

首先这是个数数题,我们要求的是\(\frac{\sum{[a_i + a_j > a_k]}}{C_n^3}\)

其中\(a\)按从小到大排序, \(i < j < k\)。

因为\(a_i \leqslant 10^5\),那么可以直接暴力生成函数卷积。

但是如果直接算合法的方案的话会出现一点问题。我们在算的时候维护了一个后缀和表示乘起来大于等于这个数的方案。我们要求的方案需要满足\(i < j < k\),但是这样计算可能会出现不合法的情况。

那么可以算不合法的方案维护前缀和,这样就不会出现上面的情况了

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 1;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
namespace Poly {
int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], lim, INV2;
const int G = 3, mod = 998244353, mod2 = 998244352;
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;}
template <typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;}
int fp(int a, int p, int P = mod) {
int base = 1;
for(; p > 0; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base * a % P;
return base;
}
int inv(int x) {
return fp(x, mod - 2);
}
int GetLen(int x) {
int lim = 1;
while(lim < x) lim <<= 1;
return lim;
}
void Init(/*int P,*/ int Lim) {
INV2 = fp(2, mod - 2);
for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
}
void NTT(int *A, int lim, int opt) {
int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int Wn = GPow[mid << 1];
for(int i = 0; i < lim; i += (mid << 1)) {
for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
int x = A[i + j], y = mul(w, A[i + j + mid]);
A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
}
}
}
if(opt == -1) {
reverse(A + 1, A + lim);
int Inv = fp(lim, mod - 2);
for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
}
}
void Mul(int *a, int *b, int N, int M) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
int lim = 1, len = 0;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i <= N; i++) A[i] = a[i];
for(int i = 0; i <= M; i++) B[i] = b[i];
NTT(A, lim, 1); NTT(B, lim, 1);
for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
NTT(B, lim, -1);
for(int i = 0; i <= N + M; i++) b[i] = B[i];
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
};
using namespace Poly;
int N, a[MAXN], b[MAXN], c[MAXN], mx;
LL sum[MAXN];
LL Comb(int N) {
LL ta = N, tb = N - 1, tc = N - 2;
bool f2 = 1, f3 = 1;
if(ta % 2 == 0 && f2) ta /= 2, f2 = 0;
if(tb % 2 == 0 && f2) tb /= 2, f2 = 0;
if(ta % 3 == 0 && f3) ta /= 3, f3 = 0;
if(tb % 3 == 0 && f3) tb /= 3, f3 = 0;
if(tc % 3 == 0 && f3) tc /= 3, f3 = 0;
return 1ll * ta * tb * tc;
}
void solve() {
memset(b, 0, sizeof(b)); memset(c, 0, sizeof(c)); mx = 0; sum[0] = 0;
N = read();
for(int i = 1; i <= N; i++) a[i] = read(), b[a[i]]++, c[a[i]]++, chmax(mx, a[i]);
Mul(b, c, mx, mx);
for(int i = 1; i <= N; i++) c[2 * a[i]]--;
for(int i = 1; i <= mx; i++) c[i] /= 2;
for(int i = 1; i <= mx; i++) sum[i] = sum[i - 1] + c[i];
LL ans = 0;
for(int i = 1; i <= N; i++) ans += sum[a[i]];
LL tmp = Comb(N); ans = tmp - ans;
printf("%.7lf\n", (double) ans / tmp);
}
signed main() {
// freopen("a.in", "r", stdin);
Init(4e5);
for(int T = read(); T--; solve());
return 0;
}

HDU4609 3-idiots(生成函数)的更多相关文章

  1. [HDU4609]3-idiots(生成函数+FFT)

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  3. bzoj 3513: [MUTC2013]idiots【生成函数+FFT】

    想了好长时间最后发现真是石乐志 第一反应就是两边之和大于第三边,但是这个东西必须要满足三次-- 任意的两边之和合通过生成函数套路+FFT求出来(记得去掉重复选取的),然后这任意两边之和大于任意第三边可 ...

  4. BZOJ3513[MUTC2013]idiots——FFT+生成函数

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  5. HDU4609 & FFT

    关于这道题请移步kuangbin爷的blog:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 感觉我一辈子也不能写出这么 ...

  6. [CodeForces - 712D]Memory and Scores (DP 或者 生成函数)

    题目大意: 两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高.  ( ...

  7. HDU4609 3-idiots(母函数 + FFT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4609 Description King OMeGa catched three men wh ...

  8. HDU 1171 Big Event in HDU --暴力+生成函数

    题意:给n种房子,每种房子有一个值val和个数cnt,现在要把这些房子分成两部分,争取两部分总值相等,如果不能相等,让A>B,且A-B最小. 解法:先跑一次生成函数,c[n]表示组成总值为n的方 ...

  9. HDU 2189 悼念512汶川大地震遇难同胞――来生一起走 --生成函数

    这题跟上两题也差不多. 把150以内的素数找出来,把素数的值看做硬币的面值,每个硬币的个数即ceil(150/prime[i]),因为再多也没用,最多组成n=150就行了,所以又回到了找硬币问题.用生 ...

随机推荐

  1. Transaction rolled back because it has been marked as rollback-only

    出现这种错误的原因 1.接口A 调用了接口B 2.接口B报异常了,没有在B里面进行try catch捕获 3.接口A对 接口B进行了try catch捕获 因为接口B报异常 会把当前事物A接口的事物( ...

  2. java,让debug出色

    虽然我们不喜欢bug,但是bug永远都存在.虽然我们牛逼,但是仍然有不知道的东西,解决不了的问题.so,还得借助工具,让咱效率提起来扛扛的.解决的问题如是:由于某种原因,其他系统发送的mq,我这边说没 ...

  3. Linux 下 pushd,popd,cd- 用法

    一,为何要使用这几个命令? 可能大家会有疑问,为何要使用这几个命令,   难道用cd不就可以切换目录了吗?   没错,使用cd就可以切换到需要访问的目录,   但是有时会是一个路径很长,层次很多的目录 ...

  4. 数据库语句收藏(MySQL)

    概览 => MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性. =>关键字不区分大小写 => S ...

  5. 涨姿势:Spring Boot 2.x 启动全过程源码分析

    目录 SpringApplication 实例 run 方法运行过程 总结 上篇<Spring Boot 2.x 启动全过程源码分析(一)入口类剖析>我们分析了 Spring Boot 入 ...

  6. app开发中,前后端使用AES进行数据加密传输

    问题:当数据调用没有使用https加密时,app被抓包,接口暴露,此时可能导致被刷等安全问题 解决:1. 使用https传输 2. 在进行数据传输时进行手动加密(app端和后端定义统一的加密方式),这 ...

  7. 手动实现一个虚拟DOM算法

    发现一个好文:<深度剖析:如何实现一个 Virtual DOM 算法> 源码 文章写得非常详细,仔细看了一遍代码,加了一些注释.其实还有有一些地方看的不是很懂(毕竟我菜qaq 先码 有时间 ...

  8. 不得不提的volatile及指令重排序(happen-before)

    微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...

  9. Java Socket NIO详解(转)

    java选择器(Selector)是用来干嘛的? 2009-01-12 22:21jsptdut | 分类:JAVA相关 | 浏览8901次 如题,不要贴api的,上面的写的我看不懂希望大家能给我个通 ...

  10. 浅谈JavaScript 函数作用域当中的“提升”现象

    在JavaScript当中,定义变量通过var操作符+变量名.但是不加 var 操作符,直接赋值也是可以的. 例如 : message = "hello JavaScript ! " ...