sigmoid 、tanh 、ReLu

  • tanh 函数或者双曲正切函数是总体上都优于 sigmoid 函数的激活函数。

  • 基本已经不用 sigmoid 激活函数了,tanh 函数在所有场合都优于 sigmoid 函数。
  • 但有一个例外:在二分类的问题中,对于输出层,因为y的值是 0 或 1,所以想让y值介于 0 和 1 之间,而不是在-1 和+1 之间。所以需要使用 sigmoid 激活函数。
  • sigmoid 函数和 tanh 函数两者共同的缺点是,在z特别大或者特别小的情况下,导数的梯度或者函数的斜率会变得特别小,最后就会接近于 0,导致降低梯度下降的速度。

这有一些选择激活函数的经验法则:

  • 如果输出是 0、1 值(二分类问题),则输出层选择 sigmoid 函数,然后其它的所有单元都选择 Relu 函数。
  • 这是很多激活函数的默认选择,如果在隐藏层上不确定使用哪个激活函数,那么通常会使用 Relu 激活函数。有时,也会使用 tanh 激活函数,但 Relu 的一个优点是:当z是负值的时候,导数等于 0。

这里也有另一个版本的 Relu 被称为 Leaky Relu。

  • 当z是负值时,这个函数的值不是等于 0,而是轻微的倾斜,如图。
  • 这个函数通常比 Relu 激活函数效果要好,尽管在实际中 Leaky ReLu 使用的并不多。

两者的优点是:

  • 第一,在z的区间变动很大的情况下,激活函数的导数或者激活函数的斜率都会远大于0,在程序实现就是一个 if-else 语句,而 sigmoid 函数需要进行浮点四则运算,在实践中,使用 ReLu 激活函数神经网络通常会比使用 sigmoid 或者 tanh 激活函数学习的更快。
  • 第二,sigmoid 和 tanh 函数的导数在正负饱和区的梯度都会接近于 0,这会造成梯度弥散,而 Relu 和 Leaky ReLu 函数大于 0 部分都为常熟,不会产生梯度弥散现象。(同时应该注意到的是,Relu 进入负半区的时候,梯度为 0,神经元此时不会训练,产生所谓的稀疏性,而 Leaky ReLu 不会有这问题)
  • z在 ReLu 的梯度一半都是 0,但是,有足够的隐藏层使得 z 值大于 0,所以对大多数的训练数据来说学习过程仍然可以很快。

快速概括一下不同激活函数的过程和结论。

  • sigmoid 激活函数:除了输出层是一个二分类问题基本不会用它。
  • tanh 激活函数:tanh 是非常优秀的,几乎适合所有场合。
  • ReLu 激活函数:最常用的默认函数,,如果不确定用哪个激活函数,就使用 ReLu 或者Leaky ReLu。

Relu计算方便,可以解决梯度消失

梯度消失问题,代表激活函数没选好

如果不确定哪一个激活函数效果更好,可以把它们都试试,然后在验证集或者发展集上进行评价。然后看哪一种表现的更好,就去使用它。

来源:吴恩达deeplearning笔记

ML激活函数使用法则的更多相关文章

  1. tensorflow基础架构 - 处理结构+创建一个线性回归模型+session+Variable+Placeholder

    以下仅为自己的整理记录,绝大部分参考来源:莫烦Python,建议去看原博客 一.处理结构 因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据 ...

  2. ML(5)——神经网络1(神经元模型与激活函数)

    上一章介绍了使用逻辑回归处理分类问题.尽管逻辑回归是个非常好用的模型,但是在处理非线性问题时仍然显得力不从心,下图就是一个例子: 线性模型已经无法很好地拟合上面的样本,所以选择了更复杂的模型,得到了复 ...

  3. ML面试1000题系列(51-60)

    本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 51.简单说下sigmoid激活函数 常用的非线 ...

  4. ReLu(Rectified Linear Units)激活函数

    论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) 起源:传统激活函数.脑神经元激活频率研究.稀疏激活性 传统Sigmoid系激活函数 传 ...

  5. [DeeplearningAI笔记]ML strategy_1_1正交化/单一数字评估指标

    机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确 ...

  6. 【深度学习】深入理解ReLU(Rectifie Linear Units)激活函数

    论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有 ...

  7. 大叔学ML第四:线性回归正则化

    目录 基本形式 梯度下降法中应用正则化项 正规方程中应用正则化项 小试牛刀 调用类库 扩展 正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则:正规:常规:正宗等.出自<楚 ...

  8. 一位ML工程师构建深度神经网络的实用技巧

    一位ML工程师构建深度神经网络的实用技巧 https://mp.weixin.qq.com/s/2gKYtona0Z6szsjaj8c9Vg 作者| Matt H/Daniel R 译者| 婉清 编辑 ...

  9. ML(5)——神经网络2(BP反向传播)

    上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全 ...

随机推荐

  1. 对象的宽度、top位置,x坐标属性

    DOM对象   DOM对象属性 对应css 说明 读/写 width   obj.clientWidth=20 1. 内联样式 <p style="width:20px"&g ...

  2. Java_oracle超出打开游标的最大数的原因和解决方案

    第一步:核查Oracle数据库 的游标的最大数 处理超出打开游标的最大数异常(ORA-01000: maximum open cursors exceeded) ORA-01000_maximum_o ...

  3. Confluence 6 在 Apache 或者系统级别阻止垃圾

    如果一个垃圾发布机器人攻击你的 Confluence 站点,这些程序可能来自于同一个 IP 地址,或者是一个比较小范围的 IP 地址段.希望找到攻击者的 IP 地址,请参考 Apache access ...

  4. gnuradio 创建cos_source

    C++教程 ys_linux@computer:~$ gr_modtool nm kcd Creating out-of-tree module in ./gr-kcd... Done. Use 'g ...

  5. 【python】内存相关

    1.  /proc/pid/status 可以查看进程相关的详细信息,当内存异常时可查看 参考:http://blog.csdn.net/beckdon/article/details/4849190 ...

  6. kali linux DVWA config 问题解决方案

    1.下载DVWA之后解压到 var/www/html目录下 unzip DVWA-master.zip -d /usr/www/html 2.配置 打开终端,执行以下命令: 将apache2停止:se ...

  7. cf自训6

    cf946D 背包+区间dp 好题 /* 先预处理出每行消去i个1后可以的到的最小时间: 先求每行的前缀和,枚举左端点和右端点,消去的1 cost=tot-sum[r]+sum[l-1],区间长度=r ...

  8. bzoj2200拓扑排序+最短路+联通块

    自己写的不知道哪里wa了,明明和网上的代码差不多.,. /* 给定一张图,有的边是无向边,有的是有向边,有向边不会出现在环中,且有可能是负权值 现在给定起点s,求出s到其余所有点的最短路长度 任何存在 ...

  9. 处理json大文件

    import json import pymysql # 读取review数据,并写入数据库 # 导入数据库成功,总共4736897条记录 def prem(db): cursor = db.curs ...

  10. Php7有哪些新特性:

    PHP7在PHP5的基础上又做了一次质的提升,当然改变很多,我这里以我的总结简单说下,主要发生了下面这些更改: 移除了一些旧的特性 ZEND引擎升级到Zend Engine 3,也就是所谓的PHP N ...