Luogu P4248 [AHOI2013]差异
题目链接 \(Click\) \(Here\)
神仙题。或者可能我太菜了没见过后缀数组的骚操作,然后就被秀了一脸\(hhhhh\)
$$\sum\limits_{1<=i < j <= n} len(T_i) + len(T_j) - 2 * lcp (T_i, T_j)$$
这个式子我们显然可以把前面拆出来当常数算(\({(n - 1) * n * (n + 1) }/ 2\)),剩下的就是怎么计算每个区间的\(lcp\)之和了。
这个问题,我们转化成后缀数组的\(height\)来进行计算。仔细思考会发现,原字符串的每对\(i\)和\(j\)事实上和\(height\)数组的每一段区间\([rk[i], rk[j]]\)一一对应。至此,我们的问题又转化成了求\(height\)数组上的每一个区间的最小值之和。
暴力求显然是\(O(N^2)\)的,承受不住。根据\(lcp\)具有可合并性$ min(lcp (T_i,T_ j), lcp (T_{j + 1}, T_{k})) = lcp (T_i, T_k)\(,而\)height\(数组又代表了\)lcp(T_i, T_{sa[rk[i ] - 1]})$,那么我们就可以这么做:
设\(dp[i]\)为\(height\)数组中前缀\(i\)的每一个后缀贡献出的答案。
对于任意\(i > p\),当\(height[i] >= height[p]\)时,我们可以在所有\(height[p]\)统治的答案里,在后面缀上一个\([p-1,i]\)的区间,所以可以认为是:前缀\(i\)的贡献中,还要包含一个前缀\(p\)的总贡献。
所以只要计算最近的一个\(p\)就可以囊括\([1,p]\)内的所有答案,维护最近的小于\(height[i]\)的\(p\)的位置即可。
所以有\(f[i] = f[p] + (i - p) * height[i];\)
如果\(i\)的前面不存在\(p\),满足\(height[p] <= height[i]\),那么前缀\([1,i]\)的所有后缀\(height\)的最小值都是\(height[i]\)(被\(i\)统治),即贡献为\(i * height[i]\)。
为了维护前一个比\(height[i]\)小的\(height\)值的相关信息,我们需要开一个递增的单调栈,遍历到\(i\)时弹出所有\(height\)值小于\(height[i]\)的元素,结束时再插入该\(height\)。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 500010;
char s[N];
int n, m = 255, sa[N], tp[N];
int rk[N], _rk[N], bin[N], height[N];
void base_sort () {
for (int i = 0; i <= m; ++i) bin[i] = 0;
for (int i = 1; i <= n; ++i) bin[rk[tp[i]]]++;
for (int i = 1; i <= m; ++i) bin[i] += bin[i - 1];
for (int i = n; i >= 1; --i) sa[bin[rk[tp[i]]]--] = tp[i];
}
void suffix_sort () {
for (int i = 1; i <= n; ++i) {
tp[i] = i;
rk[i] = s[i - 1];
}
base_sort ();
for (int w = 1; w <= n; w <<= 1) {
int cnt = 0;
for (int i = n - w + 1; i <= n; ++i) {
tp[++cnt] = i;
}
for (int i = 1; i <= n; ++i) {
if (sa[i] > w) {
tp[++cnt] = sa[i] - w;
}
}
base_sort ();
memcpy (_rk, rk, sizeof (rk));
rk[sa[1]] = cnt = 1;
for (int i = 2; i <= n; ++i) {
rk[sa[i]] = _rk[sa[i]] == _rk[sa[i - 1]] && _rk[sa[i] + w] == _rk[sa[i - 1] + w] ? cnt : ++cnt;
}
if (cnt == n) break;
m = cnt;
}
// printf ("sa : ");for (int i = 1; i <= n; ++i) printf ("%d ", sa[i]); printf ("\n");
}
void get_height () {
int k = 0;
for (int i = 1; i <= n; ++i) {
if (k) k--;
int j = sa[rk[i] - 1];
while (s[i + k - 1] == s[j + k - 1]) ++k;
height[rk[i]] = k;
}
// printf ("height : ");
// for (int i = 1; i <= n; ++i) {
// printf ("%d ", height[i]);
// }
// printf ("\n");
}
struct node {
int pos, val;
node (int ppos = 0, int vval = 0) {pos = ppos, val = vval;}
};
node sta[N]; int top;
LL f[N];
int main () {
scanf ("%s", s);
n = strlen (s);
suffix_sort ();
get_height ();
for (int i = 1; i <= n; ++i) {
while (top > 0 && sta[top].val > height[i]) --top;
//使sta[top].val <= height[i];
if (top > 0) {
int p = sta[top].pos; //p记录控制范围
f[i] = f[p] + (i - p) * height[i];
} else {
f[i] = i * height[i];
}
sta[++top] = node (i, height[i]);
}
LL ans = 1LL * (n - 1) * n * (n + 1) / 2;
for (int i = 1; i <= n; ++i) {
ans -= 2 * f[i];
}
cout << ans << endl;
}
Luogu P4248 [AHOI2013]差异的更多相关文章
- luogu P4248 [AHOI2013]差异 SAM
luogu P4248 [AHOI2013]差异 链接 luogu 思路 \(\sum\limits_{1<=i<j<=n}{{len}(T_i)+{len}(T_j)-2*{lcp ...
- P4248 [AHOI2013]差异 解题报告
P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...
- P4248 [AHOI2013]差异
思路 SAM 后缀自动机parent树的LCA就是两个子串的最长公共后缀 现在要求LCP 所以把字符串反转一下 然后每个点的贡献就是endpos的大小,dfs一遍求出贡献就可以了 代码 #includ ...
- 洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)
题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...
- [洛谷P4248][AHOI2013]差异
题目大意:给一个长度为$n$的字符串,求: $$\sum\limits_{1\leqslant i<j\leqslant n}|suf_i|+|suf_j|-2\times lcp(suf_i, ...
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- bzoj 3238 Ahoi2013 差异
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2357 Solved: 1067[Submit][Status ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- BZOJ_3238_[Ahoi2013]差异_后缀自动机
BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...
随机推荐
- JS--操作DOM树
<ul id="ul1"> <li id="li1">111</li> <li id="li2"& ...
- [TaskList] 省选前板子补完计划
省选前本子补完计划 [ ] 带权并查集 [ ] 树上莫队 - UOJ58 [WC2013]糖果公园 loj2485「CEOI2017」Chase
- PHP——运行shell命令|脚本
内置函数 PHP | 系统程序执行 exec shell_exec passthru system 配置 打开php.ini配置文件,并从disable_function将用到的函数从禁用中删除,然后 ...
- 四种对话框(dialog)的简单使用方法
有普通对话框,单选对话框,复选对话框,进度条的两种实现方法话不多说,直接上代码 activity_main.xml: <?xml version="1.0" encoding ...
- Codeforces300 F. A Heap of Heaps
Codeforces题号:#300F 出处: Codeforces 主要算法:树状数组/线段树 难度:4.6 思路分析: 在没看到数据范围之前真是喜出望外,直到发现O(n^2)会被卡…… 其实也不是特 ...
- bzoj 1483: [HNOI2009]梦幻布丁 (链表启发式合并)
Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input ...
- IDEA修改module的名字
首先右键module名,选择[Refactor]-[Rename...] 然后选择[Rename module] 只修改这些对于当前开发是没有问题了 但是刚开始把module添加成maven项目的时候 ...
- SVG图片如何调整大小和颜色
设计妹子给了SVG图片,在开发的时候尺寸不对,颜色也要修改,应当如何解决? 1.修改大小:在<svg> 标签中修改width.height 属性(默认单位是px)2.修改颜色:在<p ...
- MT【285】含参数函数绝对值的最大值
(浙江2013高考压轴题)已知$a\in R$,函数$f(x)=x^3-3x^2+3ax-3a+3$(2)当$x\in[0,2]$时,求$|f(x)|$的最大值. 分析:由题意$f^{'}(x)=3x ...
- 天哪又要搬家啦qvq
CSDN现在怎么这么好看了qvq 搬家回去的欲望日渐强烈... update:2019/02/25 被csdn的侧栏广告烦死了