题目链接 \(Click\) \(Here\)

神仙题。或者可能我太菜了没见过后缀数组的骚操作,然后就被秀了一脸\(hhhhh\)

$$\sum\limits_{1<=i < j <= n} len(T_i) + len(T_j) - 2 * lcp (T_i, T_j)$$

这个式子我们显然可以把前面拆出来当常数算(\({(n - 1) * n * (n + 1) }/ 2\)),剩下的就是怎么计算每个区间的\(lcp\)之和了。

这个问题,我们转化成后缀数组的\(height\)来进行计算。仔细思考会发现,原字符串的每对\(i\)和\(j\)事实上和\(height\)数组的每一段区间\([rk[i], rk[j]]\)一一对应。至此,我们的问题又转化成了求\(height\)数组上的每一个区间的最小值之和。

暴力求显然是\(O(N^2)\)的,承受不住。根据\(lcp\)具有可合并性$ min(lcp (T_i,T_ j), lcp (T_{j + 1}, T_{k})) = lcp (T_i, T_k)\(,而\)height\(数组又代表了\)lcp(T_i, T_{sa[rk[i ] - 1]})$,那么我们就可以这么做:

  • 设\(dp[i]\)为\(height\)数组中前缀\(i\)的每一个后缀贡献出的答案。

  • 对于任意\(i > p\),当\(height[i] >= height[p]\)时,我们可以在所有\(height[p]\)统治的答案里,在后面缀上一个\([p-1,i]\)的区间,所以可以认为是:前缀\(i\)的贡献中,还要包含一个前缀\(p\)的总贡献。

  • 所以只要计算最近的一个\(p\)就可以囊括\([1,p]\)内的所有答案,维护最近的小于\(height[i]\)的\(p\)的位置即可。

  • 所以有\(f[i] = f[p] + (i - p) * height[i];\)

  • 如果\(i\)的前面不存在\(p\),满足\(height[p] <= height[i]\),那么前缀\([1,i]\)的所有后缀\(height\)的最小值都是\(height[i]\)(被\(i\)统治),即贡献为\(i * height[i]\)。

为了维护前一个比\(height[i]\)小的\(height\)值的相关信息,我们需要开一个递增的单调栈,遍历到\(i\)时弹出所有\(height\)值小于\(height[i]\)的元素,结束时再插入该\(height\)。

#include <bits/stdc++.h>
using namespace std; #define LL long long
const int N = 500010; char s[N];
int n, m = 255, sa[N], tp[N];
int rk[N], _rk[N], bin[N], height[N]; void base_sort () {
for (int i = 0; i <= m; ++i) bin[i] = 0;
for (int i = 1; i <= n; ++i) bin[rk[tp[i]]]++;
for (int i = 1; i <= m; ++i) bin[i] += bin[i - 1];
for (int i = n; i >= 1; --i) sa[bin[rk[tp[i]]]--] = tp[i];
} void suffix_sort () {
for (int i = 1; i <= n; ++i) {
tp[i] = i;
rk[i] = s[i - 1];
}
base_sort ();
for (int w = 1; w <= n; w <<= 1) {
int cnt = 0;
for (int i = n - w + 1; i <= n; ++i) {
tp[++cnt] = i;
}
for (int i = 1; i <= n; ++i) {
if (sa[i] > w) {
tp[++cnt] = sa[i] - w;
}
}
base_sort ();
memcpy (_rk, rk, sizeof (rk));
rk[sa[1]] = cnt = 1;
for (int i = 2; i <= n; ++i) {
rk[sa[i]] = _rk[sa[i]] == _rk[sa[i - 1]] && _rk[sa[i] + w] == _rk[sa[i - 1] + w] ? cnt : ++cnt;
}
if (cnt == n) break;
m = cnt;
}
// printf ("sa : ");for (int i = 1; i <= n; ++i) printf ("%d ", sa[i]); printf ("\n");
} void get_height () {
int k = 0;
for (int i = 1; i <= n; ++i) {
if (k) k--;
int j = sa[rk[i] - 1];
while (s[i + k - 1] == s[j + k - 1]) ++k;
height[rk[i]] = k;
}
// printf ("height : ");
// for (int i = 1; i <= n; ++i) {
// printf ("%d ", height[i]);
// }
// printf ("\n");
} struct node {
int pos, val;
node (int ppos = 0, int vval = 0) {pos = ppos, val = vval;}
}; node sta[N]; int top;
LL f[N]; int main () {
scanf ("%s", s);
n = strlen (s);
suffix_sort ();
get_height ();
for (int i = 1; i <= n; ++i) {
while (top > 0 && sta[top].val > height[i]) --top;
//使sta[top].val <= height[i];
if (top > 0) {
int p = sta[top].pos; //p记录控制范围
f[i] = f[p] + (i - p) * height[i];
} else {
f[i] = i * height[i];
}
sta[++top] = node (i, height[i]);
}
LL ans = 1LL * (n - 1) * n * (n + 1) / 2;
for (int i = 1; i <= n; ++i) {
ans -= 2 * f[i];
}
cout << ans << endl;
}

Luogu P4248 [AHOI2013]差异的更多相关文章

  1. luogu P4248 [AHOI2013]差异 SAM

    luogu P4248 [AHOI2013]差异 链接 luogu 思路 \(\sum\limits_{1<=i<j<=n}{{len}(T_i)+{len}(T_j)-2*{lcp ...

  2. P4248 [AHOI2013]差异 解题报告

    P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...

  3. P4248 [AHOI2013]差异

    思路 SAM 后缀自动机parent树的LCA就是两个子串的最长公共后缀 现在要求LCP 所以把字符串反转一下 然后每个点的贡献就是endpos的大小,dfs一遍求出贡献就可以了 代码 #includ ...

  4. 洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)

    题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...

  5. [洛谷P4248][AHOI2013]差异

    题目大意:给一个长度为$n$的字符串,求: $$\sum\limits_{1\leqslant i<j\leqslant n}|suf_i|+|suf_j|-2\times lcp(suf_i, ...

  6. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  7. bzoj 3238 Ahoi2013 差异

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2357  Solved: 1067[Submit][Status ...

  8. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  9. BZOJ_3238_[Ahoi2013]差异_后缀自动机

    BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...

随机推荐

  1. HTTP协议 - 基础认识

    在http协议使用场景上我们最熟悉的可能就是浏览器了,作为本系列第一篇,就讲一个问题  ”浏览器怎么连接上服务器并获取网页内容的“ : 首先 浏览器怎么连接上服务器的? 如果对OSI七层模型或者TCP ...

  2. 学习 Spring (十六) AOP API

    Spring入门篇 学习笔记 Spring AOP API 是 Spring 1.2 历史用法,现在仍然支持 这是 Spring AOP 基础,现在的用法也是基于历史的,只是更简便了 Pointcut ...

  3. 集成Javascript Logging on MVC or Core

    ASP.NET Core provides us a rich Logging APIs which have a set of logger providers including: Console ...

  4. Django实现Rbac权限管理

    权限管理 权限管理是根据不同的用户有相应的权限功能,通常用到的权限管理理念Rbac. Rbac 基于角色的权限访问控制(Role-Based Access Control)作为传统访问控制(自主访问, ...

  5. 洛谷p2661信息传递题解

    题目 这个题一眼看上去就是用并查集求最小环. 我们可以设两个数组分别是f,d分别表示该点的爸爸和该点到祖先的距离. 当该点的爸爸等于他时,那他肯定就是祖先. 此时信息就肯定传递完了,此时的整个图中(我 ...

  6. bzoj 2588 : Spoj 10628. Count on a tree

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  7. HDOJ5547 SudoKu

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5547 题目大意:填数独... 思路:爆搜 #include <stdio.h> #incl ...

  8. project 2013 工时完成百分比不会自动更新填充

    [工时完成百分比].[实际完成百分比]  需要手填 [完成百分比] 会自动填,如下图

  9. MT【248】$f(x)=\dfrac{1}{x-1}+\dfrac{1}{x-b}$的性质

    探讨函数$f(x)=\dfrac{1}{x-a}+\dfrac{1}{x-b}$其中$a<b$的几个性质 分析:对称性:关于$(\dfrac{a+b}{2},0)$证明提示:$f(x)+f(a+ ...

  10. Educational Codeforces Round 54 [Rated for Div. 2] (CF1076)

    第一次在宿舍打CF 把同宿舍的妹子吵得不行... 特此抱歉QAQ A 题意:给定一个字符串, 最多删掉一个字符,使得剩余字符串字典序最小 n<=2e5 当然"最多"是假的 删 ...