学习数据结构对我来说真的相当困难,网上讲\(Treap\)的我也看不太懂,前前后后花了大概六天才把\(Treap\)学会。为了避免再次忘记,这里我整理一下\(Treap\)的基础知识和模板。

阅读此文前,你需要知道:

  • \(Treap\)的基本原理

  • 二叉查找树的性质

第一次接触\(Treap\)的同学请移步Treap的学习总结,本文着重强调代码实现和细节问题。

本文无指针,码风比较清新,请放心食用。

0.变量定义

\(:t:Treap\_node\){

  • \(rd\):随机产生的优先级

  • \(sz\):子树大小

  • \(ch\):\(0\)代表左子节点,\(1\)代表右子节点。

  • \(key\):键值(实际值大小)

  • \(cnt\):当前键值节点个数

}

  • \(tot\):结点个数

  • \(root\):根节点

1.操作类型

  • \(rotate\) - 旋转

    • 分为左旋和右旋两种,可以传一个方向的参数,把它们合成一种。

    • 流程:(这里以右旋为例)

      • 节点:\(p\)点(传址引用), \(p\)的左子节点\(ls\)

      • 把\(ls\)的右子树接在\(p\)点上

      • \(ls\)的右子节点变为\(p\)

      • 更新两个节点大小

      • 把连向\(p\)的边引向\(ls\)(\(p = ls\))

    • Q:为什么对\(p\)点传址引用?

      • A:在插入/删除点的时候同样采用了传址引用。节点\(Fa\)搜索过程中到达它的子节点\(p\)时,\(Fa\)对\(p\)点的指针\(t[Fa].ch[dir]\)会同时被传出,从而使\(rotate\)直接修改\(Fa\)和\(p\)的连接状况。

    • Q:为什么把\(ls\)的右子树接在\(p\)点上?

      • A:为了维护二叉搜索树的性质,在任意一棵子树中,你要保证左子树>根节点>右子树。\(ls\)本身所连接的右子树是合法的,根据旋转前的定义,\(ls\)的右子树键值<\(p\)点键值。为了维护旋转后\(Treap\)二叉的性质,我们选择把这一棵子树改接到\(p\)点上去。

    • 关于传入的\(dir\)参数怎么玩,可以自己画图琢磨一下。

    • 注意两个节点大小的更新顺序。

    void rotate (int &p, int dir) {
//dir = 0 / 1 -> 右旋 / 左旋
int s = t[p].ch[dir ^ 0];
t[p].ch[dir ^ 0] = t[s].ch[dir ^ 1];
t[s].ch[dir ^ 1] = p;
push_up (p);
push_up (s);
p = s;
}
  • \(Insert\) - 插入

    • 没有就加入,有就累加计数器。

    • 流程:

      • 判断与子节点的大小关系,大了向左,小了向右

      • 一路上对每个经过节点增加子树大小

      • 如果有键值相等的点,就直接累加计数器

      • 如果没有(在向子树查找过程中走到编号为\(0\)的子树)

        • 新建节点,初始化相关数据。

      • 注意传址引用

    • 程序里用了一点小\(Trick\)来记录方向,简化代码。

    • Q:这里传址引用还有什么作用?

      • A:改变连接情况的作用见上一个操作,还有一个用处是初始化根节点。每次插入都从根节点开始。如果还没有点的话,新建的节点会直接覆盖传入的根节点的地址而成为根节点。

void Insert (int &p, int key) {
if (p == 0) {
p = ++tot;
t[p].sz = 1;
t[p].cnt = 1;
t[p].key = key;
t[p].rd = rand ();
return;
}
++t[p].sz;
if (t[p].key == key) {
++t[p].cnt;
} else {
int dir = key > t[p].key;
Insert (t[p].ch[dir], key);
if (t[p].rd > t[t[p].ch[dir]].rd) {
rotate (p, dir);
}
}
}
  • \(Delete\) - 删除

    • 流程:

      • 判断与子节点的大小关系,大了向左,小了向右

      • 一路上对每个经过节点减少子树大小

      • 如果有键值相等的点

        • 如果该点个数\(>1\)

          • 直接减少点数

        • 如果点的个数\(=1\)

          • 把当前节点不断向下旋转

          • 为了保持优先级,总是把优先级更高(\(rd\)更小)的转上来

          • 如果这个点只剩\(<=1\)棵子树(\(t[p].ch[0] * t[p].ch[1] == 0\)),那么就可以把它删掉,把它还剩的那个子节点提上来。($p = t[p].ch[0] + t[p].ch[1]; $)

void Delete (int &p, int key) {
if (p == 0) {
return;
}
if (t[p].key == key) {
if (t[p].cnt > 1) {
--t[p].sz;
--t[p].cnt;
} else {
if (t[p].ch[0] * t[p].ch[1] == 0) {
//分支 < 2
p = t[p].ch[0] + t[p].ch[1];
} else {
if (t[p].ch[0] < t[p].ch[1]) {
rotate (p, 0);
} else {
rotate (p, 1);
}
Delete (p, key);
}
}
} else {
--t[p].sz;
Delete (t[p].ch[key > t[p].key], key);
}
}
  • \(nxt/pre\) - 查找前驱/后继

    • 也就是第一个比查找键值大/小的数

    • 这里以\(nxt\)为例

    • 流程:

      • 查找的键值小于当前所在节点的键值:

        • 向左走,看还有没有更小一点的值

        • 防止玩脱,先记答案

      • 否则直接向右走(一定不可能是后继)

    • 这里本蒻使用非递归版

int pre (int key) {
int p = root, ans = 0;
while (p != 0) {
if (t[p].key < key) {
ans = t[p].key;
p = t[p].ch[1];
} else {
p = t[p].ch[0];
}
}
return ans;
} int nxt (int key) {
int p = root, ans = 0;
while (p != 0) {
if (t[p].key > key) {
ans = t[p].key;
p = t[p].ch[0];
} else {
p = t[p].ch[1];
}
}
return ans;
}
  • \(kth\) - 求\(k\)大值

    • 流程:

      • \(k<=\)当前点左子树大小:去左子树找

      • \(k>\)当前节点左子树大小 + 当前节点的计数:去右子树找

      • 否则\(k\)就恰好落在当前节点上,直接返回当前节点的答案

    • 附加操作都相对简单,不作赘述。

int kth (int k) {
int p = root;
while (p != 0) {
if (k <= t[t[p].ch[0]].sz) {
p = t[p].ch[0];
} else if (k > t[t[p].ch[0]].sz + t[p].cnt) {
k -= t[t[p].ch[0]].sz + t[p].cnt;
p = t[p].ch[1];
} else {
return t[p].key;
}
}
return false;
}
  • \(get\_rnk\) - 求当前数的排名

    • 流程:

      • 键值比当前节点大:去右子树找 && 带上左子树和当前节点的贡献

      • 键值比当前节点小:去左子树找

      • 键值与当前节点相等:返回答案

    • 在返回答案时记得加上当前节点左子树大小(未统计的贡献)\(+ 1\)(排名)

int get_rnk (int key) {
int p = root, ans = 0;
while (p != 0) {
if (key < t[p].key) {
p = t[p].ch[0];
} else if (key > t[p].key) {
ans += t[p].cnt;
ans += t[t[p].ch[0]].sz;
p = t[p].ch[1];
} else {
return ans + t[t[p].ch[0]].sz + 1;
}
}
return false;
}

2.完整板子(Luogu P3369 普通平衡树)

#include <bits/stdc++.h>
#define N 100010
using namespace std; struct Treap {
int tot, root; struct Treap_node {
int rd, sz, ch[2], cnt, key;
}t[N]; Treap () {
tot = root = 0;
memset (t, 0, sizeof (t));
}
//注意初始化 void push_up (int p) {
t[p].sz = t[p].cnt;
t[p].sz += t[t[p].ch[0]].sz;
t[p].sz += t[t[p].ch[1]].sz;
}
//更新节点大小 void rotate (int &p, int dir) {
//dir = 0 / 1 -> 右旋 / 左旋
int s = t[p].ch[dir ^ 0];
t[p].ch[dir ^ 0] = t[s].ch[dir ^ 1];
t[s].ch[dir ^ 1] = p;
push_up (p);
push_up (s);
p = s;
}
//旋转 void Insert (int &p, int key) {
if (p == 0) {
p = ++tot;
t[p].sz = 1;
t[p].cnt = 1;
t[p].key = key;
t[p].rd = rand ();
return;
}
++t[p].sz;
if (t[p].key == key) {
++t[p].cnt;
} else {
int dir = key > t[p].key;
Insert (t[p].ch[dir], key);
if (t[p].rd > t[t[p].ch[dir]].rd) {
rotate (p, dir);
}
}
}
//插入 void Delete (int &p, int key) {
if (p == 0) {
return;
}
if (t[p].key == key) {
if (t[p].cnt > 1) {
--t[p].sz;
--t[p].cnt;
} else {
if (t[p].ch[0] * t[p].ch[1] == 0) {
//分支 < 2
p = t[p].ch[0] + t[p].ch[1];
} else {
if (t[p].ch[0] < t[p].ch[1]) {
rotate (p, 0);
} else {
rotate (p, 1);
}
Delete (p, key);
}
}
} else {
--t[p].sz;
Delete (t[p].ch[key > t[p].key], key);
}
}
//删除 int pre (int key) {
int p = root, ans = 0;
while (p != 0) {
if (t[p].key < key) {
ans = t[p].key;
p = t[p].ch[1];
} else {
p = t[p].ch[0];
}
}
return ans;
}
//前驱 int nxt (int key) {
int p = root, ans = 0;
while (p != 0) {
if (t[p].key > key) {
ans = t[p].key;
p = t[p].ch[0];
} else {
p = t[p].ch[1];
}
}
return ans;
}
//后继 int kth (int k) {
int p = root;
while (p != 0) {
if (k <= t[t[p].ch[0]].sz) {
p = t[p].ch[0];
} else if (k > t[t[p].ch[0]].sz + t[p].cnt) {
k -= t[t[p].ch[0]].sz + t[p].cnt;
p = t[p].ch[1];
} else {
return t[p].key;
}
}
return false;
}
//k大(返回的是第k大的键值) int get_rnk (int key) {
int p = root, ans = 0;
while (p != 0) {
if (key < t[p].key) {
p = t[p].ch[0];
} else if (key > t[p].key) {
ans += t[p].cnt;
ans += t[t[p].ch[0]].sz;
p = t[p].ch[1];
} else {
return ans + t[t[p].ch[0]].sz + 1;
}
}
return false;
}
//求排名
}tree; int n, x, opt; int main () {
// freopen ("Data.in", "r", stdin);
srand (time (NULL));
scanf ("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf ("%d %d", &opt, &x);
if (opt == 1) {//insert
tree.Insert (tree.root, x);
}
if (opt == 2) {//delete
tree.Delete (tree.root, x);
}
if (opt == 3) {//get_rank
printf ("%d\n", tree.get_rnk (x));
}
if (opt == 4) {//get_kth
printf ("%d\n", tree.kth (x));
}
if (opt == 5) {//get_pre
printf ("%d\n", tree.pre(x));
}
if (opt == 6) {//get_nxt
printf ("%d\n", tree.nxt(x));
}
}
}

快速入门Treap(代码实现)的更多相关文章

  1. CodeIgniter连接数据库及快速入门

    原文:CodeIgniter连接数据库及快速入门 一.数据库配置 CodeIgniter 有一个配置文件让你存放数据库连接值(username:用户名,password:密码,database nam ...

  2. 【翻译】WPF应用程序模块化开发快速入门(使用Prism+MEF)

    编译并运行快速入门 需要在VisualStudio 2010上运行此快速入门示例 代码下载:ModularityWithMef.zip 先重新生成解决方案 再按F5运行此示例 说明: 在此快速入门示例 ...

  3. AngularJS快速入门指南19:示例代码

    本文给出的大部分示例都可以直接运行,通过点击运行按钮来查看结果,同时支持在线编辑代码. <div ng-app=""> <p>Name: <input ...

  4. .NET Core快速入门教程 5、使用VS Code进行C#代码调试的技巧

    一.前言 为什么要调试代码?通过调试可以让我们了解代码运行过程中的代码执行信息,比如变量的值等等.通常调试代码是为了方便我们发现代码中的bug.ken.io觉得熟练代码调试技巧是成为合格程序员的基本要 ...

  5. [易学易懂系列|rustlang语言|零基础|快速入门|(16)|代码组织与模块化]

    [易学易懂系列|rustlang语言|零基础|快速入门|(16)|代码组织与模块化] 实用知识 代码组织与模块化 我们知道,在现代软件开发的过程中,代码组织和模块化是应对复杂性的一种方式. 今天我们来 ...

  6. Slickflow.NET 开源工作流引擎快速入门之三: 简单或分支流程代码编写示例

    前言:对于急切想了解引擎功能的开发人员,在下载版本后,就想尝试编写代码,完成一个流程的开发和测试.本文试图从请假流程,或分支模式来快速了解引擎代码的编写. 1. 创建或分支流程图形 或分支流程是常见的 ...

  7. Slickflow.NET 开源工作流引擎快速入门之二: 简单并行分支流程代码编写示例

    前言:对于急切想了解引擎功能的开发人员,在下载版本后,就想尝试编写代码,完成一个流程的开发和测试.本文试图从一个最简单的并行分支流程来示例说明,如何快速了解引擎代码的编写. 版本:.NET Core2 ...

  8. Slickflow.NET 开源工作流引擎快速入门之一: 简单序列流程代码编写示例

    前言:对于急切想了解引擎功能的开发人员,在下载版本后,就想尝试编写代码,完成一个流程的开发和测试.本文试图从一个最简单的流程来示例说明,如何快速了解引擎代码的编写. 版本: .NETCore 2.1 ...

  9. Web Api 入门实战 (快速入门+工具使用+不依赖IIS)

    平台之大势何人能挡? 带着你的Net飞奔吧!:http://www.cnblogs.com/dunitian/p/4822808.html 屁话我也就不多说了,什么简介的也省了,直接简单概括+demo ...

随机推荐

  1. CSS3之box-sizing属性

    box-sizing本身有三个属性:content-box(默认).border-box和padding-box. content-box:border与padding均不算入width中: bord ...

  2. SharePoint 2013 使用 RBS 功能将二进制大型对象 BLOB 存储在内容数据库外部。

    为每个内容数据库设置 BLOB 存储   启用并配置 FILESTREAM 之后,请按照以下过程在文件系统中设置 BLOB 存储.必须为要对其使用 RBS 的每个内容数据库设置 BLOB 存储. 设置 ...

  3. 给dom对象添加事件

  4. Mybatis常见问题总结

    1.大于号.小于号在sql语句中的转换 使用mybatis 时sql语句是写在xml文件中,如果sql中有一些特殊的字符的话,比如< ,<=,>,>=等符号,会引起xml格式的 ...

  5. Nginx 针对建立TCP连接优化

    L:124 sysctl -a | grep file-max //通过命令查看系统最大句柄数 [root@3 ~]# sysctl -a | grep file-max fs.file-max = ...

  6. linux拷贝多个目录下的文件到同一个目录

    拷贝a目录下的a.txt和b目录下的b.txt到c目录 cp -a \ /root/a/a.txt \ /root/b/b.txt \ /root/c/

  7. LIRE图片识别搜索demo--Ubuntu开发

    Ubuntu安装shadowsocks客户端/服务端教程 1.安装shadowsocks sudo apt-get update sudo apt-get install python-pip sud ...

  8. Android ProgressDialog 简单实用

    ProgressDialog progressDialog; @SuppressLint("HandlerLeak") Handler handler1 = new Handler ...

  9. C#中equal与==的区别

    C#中equal与==的区别 来源 https://www.cnblogs.com/dearbeans/p/5351695.html C#中,判断相等有两种方式,一种是传统的==操作,一种是objec ...

  10. Google Apps的单点登录-谷歌使用的单点登录

    简述: Customer :客户 Google:谷歌 Identity Provider:身份提供者安全断言标记语言(英语:Security Assertion Markup Language,简称S ...