洛谷P1228 分治
https://www.luogu.org/problemnew/show/P1228
我真傻,真的,我单知道这种题目可以用dfs剪枝过,没有想到还能构造分治,当我敲了一发dfs上去的时候,只看到一个42分的返回┭┮﹏┭┮
题意:构造用所给的四个图案拼凑一个缺制定位置的正方形,正方形的长度为2 ^ k (0 < k < 10)
一开始直接选择了dfs暴力填充,TLE却想不到有效的剪枝方法,一看题解这竟然是一道构造分治,原因除了愚蠢之外还有忽略了题目中正方形边长为2 ^ k这个条件
我们定义多出来的点为特殊点,我们可以用一个给定的图形把他构造为一个2 * 2的矩形,这时候如果要构造的是4 * 4的矩形,我们只需要在2 * 2的矩形下面拼接上一个图案,就多出了三个位置的特殊点,利用刚才的方法将他们补上,就变成了一个4 * 4的矩形,8 * 8同理。直接分治递归即可。
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
int read(){int x = ,f = ;char c = getchar();while (c<'' || c>''){if (c == '-') f = -;c = getchar();}
while (c >= ''&&c <= ''){x = x * + c - '';c = getchar();}return x*f;}
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,K;
void dfs(int a,int b,int x,int y,int l){
if(l == ) return;
l >>= ;
if(x - a + <= l && y - b + <= l){ //左上
printf("%d %d 1\n",a + l,b + l);
dfs(a,b,x,y,l);
dfs(a,b + l,a + l - ,b + l,l);
dfs(a + l,b,a + l,b + l - ,l);
dfs(a + l,b + l,a + l,b + l,l);
}
if(x - a + <= l && y - b + > l){ // 右上
printf("%d %d 2\n",a + l,b + l - );
dfs(a,b,a + l - ,b + l - ,l);
dfs(a,b + l,x,y,l);
dfs(a + l,b,a + l,b + l - ,l);
dfs(a + l,b + l,a + l,b + l,l);
}
if(x - a + > l && y - b + <= l){ //左下
printf("%d %d 3\n",a + l - ,b + l);
dfs(a,b,a + l - ,b + l - ,l);
dfs(a,b + l,a + l - ,b + l,l);
dfs(a + l,b,x,y,l);
dfs(a + l,b + l,a + l,b + l,l);
}
if(x - a + > l && y - b + > l){ //右下
printf("%d %d 4\n",a + l - ,b + l - );
dfs(a,b,a + l - ,b + l - ,l);
dfs(a,b + l,a + l - ,b + l,l);
dfs(a + l,b,a + l,b + l - ,l);
dfs(a + l,b + l,x,y,l);
}
}
int main(){
Sca(K);
int x = read(),y = read();
dfs(,,x,y,( << K));
return ;
}
洛谷P1228 分治的更多相关文章
- 浅谈分治 —— 洛谷P1228 地毯填补问题 题解
如果想看原题网址的话请点击这里:地毯填补问题 原题: 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子 ...
- [洛谷P1228]地毯填补问题 题解(分治)
Description 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将除公主站立的地方外的 ...
- 洛谷P1228 地毯填补问题
P1228 地毯填补问题 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子上,只要谁能用地毯将除公主站 ...
- 【文文殿下】【洛谷】分治NTT模板
题解 可以计算每一项对后面几项的贡献,然后考虑后面每一项,发现这是一个卷积,直接暴力NTT就行了,发现它是一个有后效性的,我们选择使用CDQ分治. Tips:不能像通常CDQ分治一样直接 每次递归两边 ...
- 洛谷 P1228 【地毯填补问题】
事实上感觉四个的形状分别是这样: spj报错: 1:c 越界 2:x,y 越界 3:mp[x][y] 已被占用 4:mp[x][y] 从未被使用 题解: 初看这个问题,似乎无从下手,于是我们可以先考虑 ...
- [洛谷P4721]分治FFT
NTT入门,放个板子 // luogu-judger-enable-o2 #include <bits/stdc++.h> using namespace std; #define fr( ...
- 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...
- 洛谷SP22343 NORMA2 - Norma(分治,前缀和)
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
随机推荐
- Linux vmstat命令
vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况.这个命令是我查看Linux/Unix最 ...
- nginx-添加禁止访问规则
location ~* /application/(admin|index)/static/.*$ { allow all; } location ~* /(applicaion|addos|coe| ...
- JVM深入理解<二>
以下内容来自: http://www.jianshu.com/p/ac7760655d9d JVM相关知识详解 一.Java虚拟机指令集 Java虚拟机指令由一个字节长度的.代表某种特定含义的操作码( ...
- Xml的用途
1.可以作为数据库存储数据--通过XML文件存储数据,可以通过javaScript读取外部的XML文件,然后更新HTML的数据内容 2.XML数据以纯文本格式进行存储,提供了独立于软件和硬件的数据存储 ...
- 洛谷P2320鬼谷子的钱袋.
题目 这个题考察二进制分解. \(Code\) #include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize( ...
- IDEA 安装 Sonalint失败
1.直接在线安装[Plugins]-[Browse reponsitories...],安不上,FQ了以后还是安不上 2.下载了离线的Sonalint 插件包,通过引用外部插件的方式,[Install ...
- 牛客网noip集训4
T1 (A)[https://www.nowcoder.com/acm/contest/175/A] 给出 l, r, k,请从小到大输出所有在 [l, r] 范围内,能表示为 k 的非负整数次方的所 ...
- Hdoj 1312.Red and Black 题解
Problem Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...
- 【BZOJ3613】[HEOI2014]南园满地堆轻絮(贪心)
[BZOJ3613][HEOI2014]南园满地堆轻絮(贪心) 题面 BZOJ 洛谷 题解 考虑二分的做法,每次二分一个答案,那么就会让所有的值尽可能的减少,那么\(O(n)\)扫一遍就好了. 考虑如 ...
- 题解 P4512 【【模板】多项式除法】
题目地址 前言 原理有大佬写了 所以蒟蒻只讲下本题的代码细节 我看懂的大佬博客:博客地址 因为可能知道了大致的步骤还有很多细的地方不理解导致写的时候要花很久并且看到大佬们好像都是用递归写的希望能有帮助 ...