http://poj.org/problem?id=1821

当我们在考虑内层循环j以及决策k的时候,我们可以把外层变量i看作定值,以此来优化dp状态转移方程。

题意 有n个工人准备铺m个连续的墙,每个工人有他必须图的一面墙壁Si,最多连续铺Li,每铺一个就花费Ci的钱,问最多要多少钱;

朴素算法很好想,就dp[i][j]维护i工人到这j层墙壁的最大值,对于每个工人去枚举他涂墙壁的开头和结尾然后更新即可。

时间复杂度O(NMM) M的范围是16000,很显然会T,我们考虑状态转移方程。

对于每个工人,dp[i][j]的更新是寻找一个k使得dp[i - 1][k - 1] + (j - k + 1 ) * P 最大;

在这个转移方程里,我们将i看作定值,除了状态变量j之外还有一个决策j,看似很难处理,我们将方程变形.

dp[i][j]的更新变为 max(dp[i - 1][k - 1] - (k - 1) * P) + j * P;

在这一层中,最大值的寻找仅和k有关,而k事实上对每一个i都是可以预处理出来的,在j查询的时候只有范围变动,问题就变成了常规的优化区间最大值的问题。

这里附上用ST表优化和单调队列优化的两种方法。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K;
inline int read()
{
int now=;register char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());
return now;
}
struct Node{
int L,P,S;
}node[maxn];
int dp[][maxm];
bool cmp(Node a,Node b){
return a.S < b.S;
}
int DP[maxm][];
int mm[maxm];
int num[maxm];
void initRMQ(int n,int b[]){
mm[] = -;
for(int i = ; i <= n ; i ++){
mm[i] = ((i & (i - )) == ) ? mm[i - ] + :mm[i - ];
DP[i][] = b[i];
}
for(int j = ; j <= mm[n]; j ++){
for(int i = ; i + ( << j) - <= n ; i++){
DP[i][j] = max(DP[i][j - ],DP[i + ( << (j - ))][j - ]);
}
}
}
int rmq(int x,int y){
int k = mm[y - x + ];
return max(DP[x][k],DP[y - ( << k) + ][k]);
}
int main()
{
while(~Sca2(N,K)){
For(i,,K){
scanf("%d%d%d",&node[i].L,&node[i].P,&node[i].S);
}
sort(node + ,node + + K,cmp);
Mem(dp,);
For(i,,K){
Mem(num,);
Mem(dp[i & ],);
for(int k = max(node[i].S - node[i].L + ,); k <= node[i].S; k ++){
num[k] = dp[i - & ][k - ] - node[i].P * (k - );
}
initRMQ(node[i].S,num);
For(j,,N){
dp[i & ][j] = max(dp[i - & ][j],dp[i & ][j - ]);
if(j >= node[i].S && j <= node[i].S + node[i].L - ){
dp[i & ][j] = max(dp[i & ][j],rmq(max(j - node[i].L + ,),node[i].S) + node[i].P * j);
}
}
}
Pri(dp[K & ][N]);
}
#ifdef VSCode
system("pause");
#endif
return ;
}

ST表优化

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K;
inline int read()
{
int now=;register char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());
return now;
}
struct Node{
int L,P,S;
}node[maxn];
int dp[][maxm];
bool cmp(Node a,Node b){
return a.S < b.S;
}
int Queue[maxm];
int head,tail;
int main()
{
while(~Sca2(N,K)){
For(i,,K){
scanf("%d%d%d",&node[i].L,&node[i].P,&node[i].S);
}
sort(node + ,node + + K,cmp);
Mem(dp,);
For(i,,K){
head = ; tail = ;
Mem(dp[i & ],);
for(int k = max(node[i].S - node[i].L + ,); k <= node[i].S; k ++){
int ans = dp[i - & ][k - ] - node[i].P * (k - );
while(head <= tail && dp[i - & ][Queue[tail] - ] - node[i].P * (Queue[tail] - )<= ans) tail--;
Queue[++tail] = k;
}
For(j,,N){
dp[i & ][j] = max(dp[i - & ][j],dp[i & ][j - ]);
if(j >= node[i].S){
while(head <= tail && Queue[head] < j - node[i].L + ) head++;
if(head <= tail) dp[i & ][j] = max(dp[i & ][j],dp[i - & ][Queue[head] - ] + (j - Queue[head] + ) * node[i].P);
}
}
}
Pri(dp[K & ][N]);
}
#ifdef VSCode
system("pause");
#endif
return ;
}

单调队列优化

值得一提的是单调队列的查询和处理的时间都是线性的,总时间复杂度为O(NM),而ST表的预处理要用到nlnn,所以用时会比ST表快一些

POJ1821 单调队列//ST表 优化dp的更多相关文章

  1. P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表

    P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...

  2. HDU 4123 Bob's Race:树的直径 + 单调队列 + st表

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 题意: 给你一棵树,n个节点,每条边有长度. 然后有m个询问,每个询问给定一个q值. 设dis[ ...

  3. Luogu P1198 [JSOI2008]最大数 单调队列/ST表

    开一个单调队列,下标递增,值递减. 然后在上面二分最大数. 如果加上并查集可以做到接近线性. 还有一种是插入一个数然后,从后向前更新ST表. #include<cstdio> #inclu ...

  4. Codevs 4373 窗口(线段树 单调队列 st表)

    4373 窗口 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题目描述 Description 给你一个长度为N的数组,一个长为K的滑动的窗体从最左移至最右端,你只 ...

  5. APIO2010特别行动队(单调队列、斜率优化)

    其实这题一看知道应该是DP,再一看数据范围肯定就是单调队列了. 不过我还不太懂神马单调队列.斜率优化…… 附上天牛的题解:http://www.cnblogs.com/neverforget/arch ...

  6. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  7. Max answer(单调栈+ST表)

    Max answer https://nanti.jisuanke.com/t/38228 Alice has a magic array. She suggests that the value o ...

  8. BZOJ3879:SvT(后缀数组,单调栈,ST表)

    Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始 ...

  9. BZOJ4199 [Noi2015]品酒大会 【后缀数组 + 单调栈 + ST表】

    题目 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品 酒家"和"首席猎手"两个奖项,吸 ...

随机推荐

  1. PlaNet,使用图像输入来学习世界模型

    Google AI团队与DeepMind合作,上周宣布了一个名为PlaNet的新的开源“Deep Planning”网络. PlaNet是一个人工智能代理,它只使用图像输入来学习世界模型,并使用这些模 ...

  2. 【NLP】自然语言处理:词向量和语言模型

    声明: 这是转载自LICSTAR博士的牛文,原文载于此:http://licstar.net/archives/328 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领 ...

  3. [BZOJ 2705] [SDOI 2012] Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数 \(N\),你需要求出 \(\sum gcd(i, N)(1\le i \le N ...

  4. BZOJ2084[Poi2010]Antisymmetry——回文自动机

    题目描述 对于一个01字符串,如果将这个字符串0和1取反后,再将整个串反过来和原串一样,就称作“反对称”字符串.比如00001111和010101就是反对称的,1001就不是.现在给出一个长度为N的0 ...

  5. 洛谷3822 [NOI2017] 整数 【线段树】【位运算】

    题目分析: 首先这题的询问和位(bit)有关,不难想到是用线段树维护位运算. 现在我们压32位再来看这道题. 对于一个加法操作,它的添加位置可以得到,剩下的就是做不超过32的位移.这样根据压位的理论. ...

  6. Katu Puzzle POJ - 3678(水2 - sat)

    题意: 有n个未知量,m对未知量之间的关系,判断是否能求出所有的未知量且满足这些关系 解析: 关系建边就好了 #include <iostream> #include <cstdio ...

  7. MT【257】任意存在并存

    函数$f(x)=\dfrac{4x}{x+1}(x>0),g(x)=\dfrac{1}{2}(|x-a|-|x-b|),(a<b)$, 若对任意$x_1>0$,存在$x_2\le x ...

  8. 【hjmmm网络流24题补全计划】

    本文食用方式 按ABC--分层叙述思路 可以看完一步有思路后自行思考 飞行员配对问题 题目链接 这可能是24题里最水的一道吧... 很显然分成两个集合 左外籍飞行员 右皇家飞行员 跑二分图最大匹配 输 ...

  9. ansible 开源批量管理服务器工具

    Ansible 是一款基于 Python 开发的自动化运维工具,可以进行配置管理.批量部署等功能.对于机器较多的场景,可以使用 Ansible 来免去重复敲命令的烦恼. 安装ansibleyum -y ...

  10. 「TJOI2015」概率论 解题报告

    「TJOI2015」概率论 令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数 然后列一个dp \[ f_i=\sum_{j=0}^{i-1} f_j f_{i-j ...