传送门


如果把一条线段\([l,r]\)看成一条无向边\((l,r+1)\),从\(l\)走到\(r+1\)表示线段\([l,r]\)染成红色,从\(r+1\)走到\(l\)表示线段\([l,r]\)染成蓝色,那么题目等价于给每一条边定下方向,使得对于所有点,从左往右经过的次数和从右往左经过的次数差的绝对值不超过\(1\)。

对于直线上所有奇数度的点,从左往右两两配对,那么就是要求对于所有的点从左往右经过的次数等于从右往左经过的次数。不难想到这是一个欧拉图。求解欧拉回路给边定向即可。

注意直线上的奇数度的点不能随意配对,因为如果对于\(A<B<C<D\)四个奇数入度的点,连\((A,D)\)\((B,C)\),而找到的欧拉回路方案中边的方向为\(A \rightarrow D , B \rightarrow C\),那么在这两条边去掉之后线段\([B,C]\)从左往右的次数比从右往左的次数少\(2\),就不符合题意了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<set>
#include<vector>
//This code is written by Itst
using namespace std; inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
} #define PII pair < int , int >
const int MAXN = 2e5 + 7;
multiset < PII > Edge[MAXN];
int lsh[MAXN] , in[MAXN] , N , cntL;
vector < PII > tmp;
bool col[MAXN]; void dfs(int x){
for(auto t = Edge[x].begin() ; !Edge[x].empty() ; t = Edge[x].begin()){
int a = t->first , b = t->second;
Edge[x].erase(t);
Edge[a].erase(Edge[a].find(PII(x , -b)));
if(b > 0) col[b] = 1;
dfs(a);
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read();
for(int i = 1 ; i <= N ; ++i){
int a = read() , b = read() + 1;
tmp.push_back(PII(a , b));
lsh[++cntL] = a; lsh[++cntL] = b;
}
sort(lsh + 1 , lsh + cntL + 1);
cntL = unique(lsh + 1 , lsh + cntL + 1) - lsh - 1;
for(int i = 0 ; i < N ; ++i){
int p = lower_bound(lsh + 1 , lsh + cntL + 1 , tmp[i].first) - lsh , q = lower_bound(lsh + 1 , lsh + cntL + 1 , tmp[i].second) - lsh;
Edge[p].insert(PII(q , i + 1));
Edge[q].insert(PII(p , -i - 1));
in[p] ^= 1; in[q] ^= 1;
}
int pre = 0;
for(int i = 1 ; i <= cntL ; ++i)
if(in[i])
if(!pre) pre = i;
else{
Edge[pre].insert(PII(i , 0));
Edge[i].insert(PII(pre , 0));
++in[pre]; ++in[i];
pre = 0;
}
for(int i = 1 ; i <= cntL ; ++i)
if(!Edge[i].empty())
dfs(i);
for(int i = 1 ; i <= N ; ++i)
cout << col[i] << ' ';
return 0;
}

CF429E Points and Segments 构造、欧拉回路的更多相关文章

  1. 【CF429E】Points and Segments(欧拉回路)

    [CF429E]Points and Segments(欧拉回路) 题面 CF 洛谷 题解 欧拉回路有这样一个性质,如果把所有点在平面内排成一行,路径看成区间的覆盖,那么每个点被从左往右的覆盖次数等于 ...

  2. CF429E Points and Segments

    链接 CF429E Points and Segments 给定\(n\)条线段,然后给这些线段红蓝染色,求最后直线上上任意一个点被蓝色及红色线段覆盖次数之差的绝对值不大于\(1\),构造方案,\(n ...

  3. 【CF429E】 Points and Segments(欧拉回路)

    传送门 CodeForces 洛谷 Solution 考虑欧拉回路有一个性质. 如果把点抽出来搞成一条直线,路径看成区间覆盖,那么一个点从左往右被覆盖的次数等于从右往左被覆盖的次数. 发现这个性质和本 ...

  4. Codeforces 429E - Points and Segments(欧拉回路)

    Codeforces 题面传送门 & 洛谷题面传送门 果然我不具备融会贯通的能力/ll 看到这样的设问我们可以很自然地联想到这道题,具体来说我们可以通过某种方式建出一张图,然后根据" ...

  5. 【CF429E】Points and Segments 欧拉回路

    [CF429E]Points and Segments 题意:给你数轴上的n条线段$[l_i,r_i]$,你要给每条线段确定一个权值+1/-1,使得:对于数轴上的任一个点,所有包含它的线段的权值和只能 ...

  6. [CF429E]Points ans Segments_欧拉回路

    Points and Segments 题目链接:www.codeforces.com/contest/429/problem/E 注释:略. 题解: 先离散化. 发现每个位置如果被偶数条线段覆盖的话 ...

  7. Codeforces Round #245 (Div. 2) A. Points and Segments (easy) 贪心

    A. Points and Segments (easy) Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/con ...

  8. 『ACM C++』 Codeforces | 1066A - Points in Segments

    大一生活真 特么 ”丰富多彩“ ,多彩到我要忙到哭泣,身为班长,很多班级的事情需要管理,也是,什么东西都得体验学一学,从学生会主席.团委团总支.社团社长都体验过一番了,现在差个班长也没试过,就来体验了 ...

  9. Codeforces Round #501 (Div. 3) 1015A Points in Segments (前缀和)

    A. Points in Segments time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. Vue之resource请求数据

    导入resource文件 <script src="https://cdn.staticfile.org/vue-resource/1.5.1/vue-resource.min.js& ...

  2. Android string资源 包含 数学符号等特殊字符 及 参数占位符

    定义:<?xml version="1.0" encoding="utf-8"?><resources>    <string n ...

  3. Android view层

    当屏幕可以装下内容的时候,他们的值相等,只有当view超出屏幕后,才能看出他们的区别:getMeasuredHeight()是实际View的大小,与屏幕无关,而getHeight的大小此时则是屏幕的大 ...

  4. centos7安装配置redis

    1.下载redis > cd /usr/local/src #文件下载目录 > curl -O http://download.redis.io/releases/redis-3.2.8. ...

  5. oracle测试环境表空间清理

    测试场景下,使用的oralce遇到表空间的占用超大,可以采用如下的方式进行空间的清理 首先使用sqlplus连接数据库sqlplus sys/password@orcl as sysdba 之类进行数 ...

  6. Linux中对swap分区的配置

    swap分区的安装与正常分区的安装大致相同,我这里就只说一下不同 大家可先看我上一篇的安装:https://www.cnblogs.com/feiquan/p/9219447.html 1.查看swa ...

  7. springmvc复习笔记----文件上传multipartResolver

    结构                                              web.xml <?xml version="1.0" encoding=&q ...

  8. Linux内核线程kernel thread详解--Linux进程的管理与调度(十)

    内核线程 为什么需要内核线程 Linux内核可以看作一个服务进程(管理软硬件资源,响应用户进程的种种合理以及不合理的请求). 内核需要多个执行流并行,为了防止可能的阻塞,支持多线程是必要的. 内核线程 ...

  9. DELL 服务器报CPU 1 has an internal error (IERR)

    重启服务器,然后按F2 进入到bios中,选择system bios settings这个选项,然后选择system profiles 进入,在这个里面麻烦将 C1E 和Cstate这两个选项改为di ...

  10. 《Java大学教程》—第18章 高级图形编程

    自测题:1.    在图形应用程序中为用户提供选择的多种方式:P433下拉菜单(pull-down menu).弹出式菜单(pop-up menu).对话框窗口(dialogue window).单选 ...